565 research outputs found
Electrochemical performance of NixCo1-xMoO4 (0 ⤠x ⤠1) nanowire anodes for lithium-ion batteries
NixCo1-xMoO4 (0 ⤠x ⤠1) nanowire electrodes for lithium-ion rechargeable batteries have been synthesized via a hydrothermal method, followed by thermal post-annealing at 500°C for 2 h. The chemical composition of the nanowires was varied, and their morphological features and crystalline structures were characterized using field-emission scanning electron microscopy and X-ray powder diffraction. The reversible capacity of NiMoO4 and Ni0.75Co0.25MoO4 nanowire electrodes was larger (â520 mA h/g after 20 cycles at a rate of 196 mA/g) than that of the other nanowires. This enhanced electrochemical performance of NixCo1-xMoO4 nanowires with high Ni content was ascribed to their larger surface area and efficient electron transport path facilitated by their one-dimensional nanostructure
Fabrication of core/shell ZnWO4/carbon nanorods and their Li electroactivity
Carbon-coated ZnWO4 [C-ZW] nanorods with a one-dimensional core/shell structure were synthesised using hydrothermally prepared ZnWO4 and malic acid as precursors. The effects of the carbon coating on the ZnWO4 nanorods are investigated by thermogravimetry, high-resolution transmission electron microscopy, and Raman spectroscopy. The coating layer was found to be in uniform thickness of approximately 3 nm. Moreover, the D and G bands of carbon were clearly observed at around 1,350 and 1,600 cm-1, respectively, in the Raman spectra of the C-ZW nanorods. Furthermore, lithium electroactivities of the C-ZW nanorods were evaluated using cyclic voltammetry and galvanostatic cycling. In particular, the formed C-ZW nanorods exhibited excellent electrochemical performances, with rate capabilities better than those of bare ZnWO4 nanorods at different current rates, as well as a coulombic efficiency exceeding 98%. The specific capacity of the C-ZW nanorods maintained itself at approximately 170 mAh g-1, even at a high current rate of 3 C, which is much higher than pure ZnWO4 nanorods
Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes
In this study, we report the high-yield synthesis of 2-dimensional cupric oxide (CuO) nanodiscs through dehydrogenation of 1-dimensional Cu(OH)2 nanowires at 60°C. Most of the nanodiscs had a diameter of approximately 500 nm and a thickness of approximately 50 nm. After further prolonged reaction times, secondary irregular nanodiscs gradually grew vertically into regular nanodiscs. These CuO nanostructures were characterized using X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The possible growth mechanism of the interlaced disc CuO nanostructures is systematically discussed. The electrochemical performances of the CuO nanodisc electrodes were evaluated in detail using cyclic voltammetry and galvanostatic cycling. Furthermore, we demonstrate that the incorporation of multiwalled carbon nanotubes enables the enhanced reversible capacities and capacity retention of CuO nanodisc electrodes on cycling by offering more efficient electron transport paths
Facile Synthesis and Li-Electroactivity of Cobalt Oxide Based on Resources Recovered from Waste Lithium-Ion Batteries
In this study, cobalt oxide (Co3O4) powder was prepared by simple precipitation and heat-treatment process of cobalt sulfate that is recovered from waste lithium-ion batteries (LIBs), and the effect of heat-treatment on surface properties of as-synthesized Co(OH)2 powder was systematically investigated. With different heat-treatment conditions, a phase of Co(OH)2 is transformed into CoOOH and Co3O4. The result showed that the porous and large BET surface area (ca. 116 m2/g) of Co3O4 powder was prepared at 200°C for 12 h. In addition, the lithium electroactivity of Co3O4 powder was investigated. When evaluated as an anode material for LIB, it exhibited good electrochemical performance with a specific capacity of about 500 mAh gâ1 at a current density of C/5 after 50 cycles, which indicates better than those of commercial graphite anode material
Structural abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS)
AbstractPurposeThe aim of this study was to investigate cortical thickness and gray matter volume abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS). We additionally assessed the effects of comorbid attention-deficit/hyperactivity (ADHD) on these abnormalities.MethodsSurface and volumetric MR imaging data of children with newly diagnosed BCECTS (n=20, 14 males) and age-matched healthy controls (n=20) were analyzed using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu). An additional comparison was performed between BCECTS children with and without ADHD (each, n=8). A group comparison was carried out using an analysis of covariance with a value of significance set as p<0.01 or p<0.05.ResultsChildren with BCECTS had significantly thicker right superior frontal, superior temporal, middle temporal, and left pars triangularis cortices. Voxel-based morphometric analysis revealed significantly larger cortical gray matter volumes of the right precuneus, left orbitofrontal, pars orbitalis, precentral gyri, and bilateral putamen and the amygdala of children with BCECTS compared to healthy controls. BCECTS patients with ADHD had significantly thicker left caudal anterior and posterior cingulate gyri and a significantly larger left pars opercularis gyral volume compared to BCECTS patients without ADHD.ConclusionChildren with BCECTS have thicker or larger gray matters in the corticostriatal circuitry at the onset of epilepsy. Comorbid ADHD is also associated with structural aberrations. These findings suggest structural disruptions of the brain network are associated with specific developmental electro-clinical syndromes
Analysis of Clinical Feature and Management of Fish Bone Ingestion of Upper Gastrointestinal Tract
ObjectivesFish bone impaction in the upper gastrointestinal tract is a common reason for patients to seek emergent care. The aim of this study was to find a clinical characteristics of patients with fish bone impaction in the upper gastrointestinal tract.MethodsThe study was conducted on 286 fish bone ingestion patients who complained of dysphagia and irritation after eating fish. The patients were treated according to the hospital protocol regarding the removal of fish bone. The parameters for the analysis included the age and sex of the patients, location and characteristics of the foreign body, method of removal, and type of fish.ResultsThe fish bone could be observed by the physical examination in the oral cavity and laryngopharynx in 198 patients (69.23%). For those patients in whom the foreign body could not be observed in oral cavity and laryngopharynx, noncontrast computed tomography (CT) (from nasopharynx to diaphragm) was performed. The fish bone was discovered in the esophagus of 66 patients (23.08%). The esophageal fish bone was successfully removed by transnasal flexible esophagoscopy (TNE) in 55 patients, the fish bone moved to the stomach in 10 patients and one fish bone was removed by rigid esophagoscopy due to esophageal abscess. The esophageal fish bone was mostly found in patients aged 50 years and older.ConclusionFish bone foreign body ingestion in the esophagus appeared to be more common in older patients. Incorporating noncontrast CT and TNE can facilitate decision-making and adequate treatment for patients with fish bone impactions
Facile synthesis of nano-Li4 Ti5O12 for high-rate Li-ion battery anodes
One of the most promising anode materials for Li-ion batteries, Li4Ti5O12, has attracted attention because it is a zero-strain Li insertion host having a stable insertion potential. In this study, we suggest two different synthetic processes to prepare Li4Ti5O12 using anatase TiO2 nanoprecursors. TiO2 powders, which have extraordinarily large surface areas of more than 250 m2 g-1, were initially prepared through the urea-forced hydrolysis/precipitation route below 100°C. For the synthesis of Li4Ti5O12, LiOH and Li2CO3 were added to TiO2 solutions prepared in water and ethanol media, respectively. The powders were subsequently dried and calcined at various temperatures. The phase and morphological transitions from TiO2 to Li4Ti5O12 were characterized using X-ray powder diffraction and transmission electron microscopy. The electrochemical performance of nanosized Li4Ti5O12 was evaluated in detail by cyclic voltammetry and galvanostatic cycling. Furthermore, the high-rate performance and long-term cycle stability of Li4Ti5O12 anodes for use in Li-ion batteries were discussed
Complete biologic response to taxane based chemotherapy confirmed by [18F]FDG PET/CT and surgery in a cancer of unknown primary site
Cancers of an unknown primary site are heterogenous with respect to their clinical and pathologic features. They are generally very aggressive, but specific favorable subsets have a better prognosis. For these favorable subsets, taxane based chemotherapy is very effective for a subset of woman with papillary serous peritoneal adenocarcinoma. A 52 year-old woman underwent [18F]-FDG PET/CT for routine health screening. On PET/CT, multiple hypermetabolic lymph nodes were detected in the paraaortic spaces, and there were no other hypermetabolic abnormalities. The patient was diagnosed with an unknown primary cancer that probably originated from the ovary or peritoneum, according to clinical studies and biopsy results. This was not a typical case of a favorable subset of cancer of an unknown primary site, but the tumor showed complete biologic response to taxane based chemotherapy as revealed by PET/CT, and necrotic tumor cells were confirmed by surgery
- âŚ