6,163 research outputs found

    Eleven-dimensional massless superparticles and matrix theory spin-orbit couplings revisited

    Get PDF
    The classical probe dynamics of the eleven-dimensional massless superparticles in the background geometry produced by N source M-momenta is investigated in the framework of N-sector DLCQ supergravity. We expand the probe action up to the two fermion terms and find that the fermionic contributions are the spin-orbit couplings, which precisely agree with the matrix theory calculations. We comment on the lack of non-perturbative corrections in the one-loop matrix quantum mechanics effective action and its compatibility with the supergravity analysis.Comment: 11 pages, Latex, no figure

    Structure in Supersymmetric Yang-Mills Theory

    Full text link
    We show that requiring sixteen supersymmetries in quantum mechanical gauge theory implies the existence of a web of constrained interactions. Contrary to conventional wisdom, these constraints extend to arbitrary orders in the momentum expansion.Comment: 22 pages, LaTe

    Gravitational Lensing by Power-Law Mass Distributions: A Fast and Exact Series Approach

    Get PDF
    We present an analytical formulation of gravitational lensing using familiar triaxial power-law mass distributions, where the 3-dimensional mass density is given by ρ(X,Y,Z)=ρ0[1+(Xa)2+(Yb)2+(Zc)2]ν/2\rho(X,Y,Z) = \rho_0 [1 + (\frac{X}{a})^2 + (\frac{Y}{b})^2 + (\frac{Z}{c})^2]^{-\nu/2}. The deflection angle and magnification factor are obtained analytically as Fourier series. We give the exact expressions for the deflection angle and magnification factor. The formulae for the deflection angle and magnification factor given in this paper will be useful for numerical studies of observed lens systems. An application of our results to the Einstein Cross can be found in Chae, Turnshek, & Khersonsky (1998). Our series approach can be viewed as a user-friendly and efficient method to calculate lensing properties that is better than the more conventional approaches, e.g., numerical integrations, multipole expansions.Comment: 24 pages, 3 Postscript figures, ApJ in press (October 10th

    Finite-element analysis of contact between elastic self-affine surfaces

    Full text link
    Finite element methods are used to study non-adhesive, frictionless contact between elastic solids with self-affine surfaces. We find that the total contact area rises linearly with load at small loads. The mean pressure in the contact regions is independent of load and proportional to the rms slope of the surface. The constant of proportionality is nearly independent of Poisson ratio and roughness exponent and lies between previous analytic predictions. The contact morphology is also analyzed. Connected contact regions have a fractal area and perimeter. The probability of finding a cluster of area aca_c drops as acτa_c^{-\tau} where τ\tau increases with decreasing roughness exponent. The distribution of pressures shows an exponential tail that is also found in many jammed systems. These results are contrasted to simpler models and experiment.Comment: 13 pages, 15 figures. Replaced after changed in response to referee comments. Final two figures change

    Smearing Effect in Plane-Wave Matrix Model

    Full text link
    Motivated by the usual D2-D0 system, we consider a configuration composed of flat membrane and fuzzy sphere membrane in plane-wave matrix model, and investigate the interaction between them. The configuration is shown to lead to a non-trivial interaction potential, which indicates that the fuzzy sphere membrane really behaves like a graviton, giant graviton. Interestingly, the interaction is of r^{-3} type rather than r^{-5} type. We interpret it as the interaction incorporating the smearing effect due to the fact that the considered supersymmetric flat membrane should span and spin in four dimensional subspace of plane-wave geometry.Comment: 26 pages; added referenc

    Euler number of Instanton Moduli space and Seiberg-Witten invariants

    Get PDF
    We show that a partition function of topological twisted N=4 Yang-Mills theory is given by Seiberg-Witten invariants on a Riemannian four manifolds under the condition that the sum of Euler number and signature of the four manifolds vanish. The partition function is the sum of Euler number of instanton moduli space when it is possible to apply the vanishing theorem. And we get a relation of Euler number labeled by the instanton number kk with Seiberg-Witten invariants, too. All calculation in this paper is done without assuming duality.Comment: LaTeX, 34 page

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM

    Formation of Five-Dimensional String Solutions from the Gravitational Collapse

    Full text link
    We study the formation of five-dimensional string solutions including the Gregory-Laflamme (GL) black string, the Kaluza-Klein (KK) bubble, and the geometry with a naked singularity from the gravitational collapse. The interior solutions of five-dimensional Einstein equations describe collapsing non-isotropic matter clouds. It is shown that the matter cloud always forms the GL black string solution while the KK bubble solution cannot be formed. The numerical study seems to suggest that the collapsing matter forms the geometries with timelike naked curvature singularities, which should be taken cautiously as the general relativity is not reliable in the strong curvature regime.Comment: 17 pages, 10 figures, LaTeX, to appear in Class. Quant. Grav., a appendix and some discussions added, title change
    corecore