1,407 research outputs found

    Fade Lighting Control Method for Visual Comfort and Energy Saving

    Get PDF
    This study proposes a fade lighting control method to ensure the visual comfort of indoor occupants through gradual illuminance control while saving energy. The illuminance sensor measures the indoor illuminance and calculates the required illuminance for achieving a reference illuminance of 500 Lux. The control illuminance for each lighting is derived based on the required illuminance, and it is confirmed to fall within the threshold range of 20%. The illuminance values and time intervals for fade lighting control are calculated, ensuring that the amount of illuminance adjustment is divided by the size of the threshold range or less. In the performance evaluation, the proposed method (experimental group) was compared with the influence-based control method (control group). The result shows that this fade lighting control method minimizes the visual discomfort of occupants caused by sudden changes in lighting, and the same energy-saving of 11-42% is achieved as the control group

    On SS-nn-absorbing ideals

    Full text link
    Let RR be a commutative ring with identity, SS a multiplicative subset of RR and II an ideal of RR disjoint from SS. In this paper, we introduce the notion of an SS-nn-absorbing ideal which is a generalization of both the SS-prime ideals and nn-absorbing ideals. Moreover, we investigate the basic properties, quotient extension, existence and amalgamation of SS-nn-absorbing ideals.Comment: 18page

    The Control Method for Wavelength-Based CCT of Natural Light Using Warm/Cool White LED

    Get PDF
    Reproducing circadian patterns of natural light through lighting requires technology that can control correlated color temperature (CCT) and short wavelength ratio (SWR) simultaneously. This study proposes a method for controlling wavelength-based CCT of natural light using LED light sources. First, the spectral power distribution (SPD) of each channel of the test lighting (two-channel LED lighting with warm white and cool white) is identified through actual measurement. Next, CCT and SWR are calculated based on the additive mixing of SPD using the mixing ratio from the measured SPD. Finally, the regression equations for mixing ratio-CCT and mixing ratio-SWR are derived through regression analysis. These equations are then utilized to implement a wavelength-based CCT control algorithm. For performance and evaluation purposes, natural light reproduction experiments were conducted, achieving a mean error of 94.5K for CCT and 1.5% for SWR

    The Rhizome Mixture of Anemarrhena asphodeloides

    Get PDF
    We investigated the effect of DWac on the gut microbiota composition in mice with 2,3,6-trinitrobenzenesulfonic acid- (TNBS-) induced colitis. Treatment with DWac restored TNBS-disturbed gut microbiota composition and attenuated TNBS-induced colitis. Moreover, we examined the effect of DWac in mice with mesalazine-resistant colitis (MRC). Intrarectal injection of TNBS in MRC mice caused severe colitis, as well as colon shortening, edema, and increased myeloperoxidase activity. Treatment with mesalazine (30 mg/kg) did not attenuate TNBS-induced colitis in MRC mice, whereas treatment with DWac (30 mg/kg) significantly attenuated TNBS-induced colitis. Moreover, treatment with the mixture of mesalazine (15 mg/kg) and DWac (15 mg/kg) additively attenuated colitis in MRC mice. Treatment with DWac and its mixture with mesalazine inhibited TNBS-induced activation of NF-κB and expression of M1 macrophage markers but increased TNBS-suppressed expression of M2 macrophage markers. Furthermore, these inhibited TNBS-induced T-bet, RORγt, TNF-α, and IL-17 expression but increased TNBS-suppressed Foxp3 and IL-10 expression. However, Th2 cell differentiation and GATA3 and IL-5 expression were not affected. These findings suggest that DWac can ameliorate MRC by increasing the polarization of M2 macrophage and correcting the disturbance of gut microbiota and Th1/Th17/Treg, as well as additively attenuating MRC along with mesalazine

    Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes.

    Get PDF
    Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration

    Mechanism of Benzofuroindole-induced Potentiation of BKCa channel

    Get PDF

    Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods

    Get PDF
    We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications
    • …
    corecore