7,849 research outputs found

    ESR Study of (C_5H_{12}N)_2CuBr_4

    Full text link
    ESR studies at 9.27, 95.4, and 289.7 GHz have been performed on (C5_5H12_{12}N)2_2CuBr4_4 down to 3.7 K. The 9.27 GHz data were acquired with a single crystal and do not indicate the presence of any structural transitions. The high frequency data were collected with a polycrystalline sample and resolved two absorbances, consistent with two crystallographic orientations of the magnetic sites and with earlier ESR studies performed at 300 K. Below BC1=6.6B_{C1}=6.6 T, our data confirm the presence of a spin singlet ground state.Comment: 2 pages, 4 figs., submitted 23rd International Conference on Low Temperature Physics (LT-23), Aug. 200

    Geodesic Motions in 2+1 Dimensional Charged Black Holes

    Get PDF
    We study the geodesic motions of a test particle around 2+1 dimensional charged black holes. We obtain a class of exact geodesic motions for the massless test particle when the ratio of its energy and angular momentum is given by square root of cosmological constant. The other geodesic motions for both massless and massive test particles are analyzed by use of numerical method.Comment: 13page

    The Dendritic magnetic avalanches in carbon-free MgB2_2 thin films with and without a deposited Au layer

    Full text link
    From the magneto optics images (MOI), the dendritic magnetic avalanche is known to appear dominantly for thin films of the newly discovered MgB2_2. To clarify the origin of this phenomenon, we studied in detail the MOI of carbon-free MgB2_2 thin films with and without a deposited gold layer. The MOI indicated carbon contamination was not the main source of the avalanche. The MOI clearly showed that the deposition of metallic gold deposition on top of a MgB2_2 thin film improved its thermal stability and suppressed the sudden appearance of the dendritic flux avalanche. This is consistent with the previous observation of flux noise in the magnetization.Comment: 9 pages, 4 figeure

    Interactions Between Spermine-Derivatized Tentacle Porphyrins And The Human Telomeric DNA G-Quadruplex

    Get PDF
    G-rich DNA sequences have the potential to fold into non-canonical G-Quadruplex (GQ) structures implicated in aging and human diseases, notably cancers. Because stabilization of GQs at telomeres and oncogene promoters may prevent cancer, there is an interest in developing small molecules that selectively target GQs. Herein, we investigate the interactions of meso-tetrakis-(4-carboxysperminephenyl)porphyrin (TCPPSpm4) and its Zn(II) derivative (ZnTCPPSpm4) with human telomeric DNA (Tel22) via UV-Vis, circular dichroism (CD), and fluorescence spectroscopies, resonance light scattering (RLS), and fluorescence resonance energy transfer (FRET) assays. UV-Vis titrations reveal binding constants of 4.7 × 10⁶ and 1.4 × 10⁷ M⁻¹ and binding stoichiometry of 2–4:1 and 10–12:1 for TCPPSpm4 and ZnTCPPSpm4, respectively. High stoichiometry is supported by the Job plot data, CD titrations, and RLS data. FRET melting indicates that TCPPSpm4 stabilizes Tel22 by 36 ± 2 °C at 7.5 eq., and that ZnTCPPSpm4 stabilizes Tel22 by 33 ± 2 °C at ~20 eq.; at least 8 eq. of ZnTCPPSpm4 are required to achieve significant stabilization of Tel22, in agreement with its high binding stoichiometry. FRET competition studies show that both porphyrins are mildly selective for human telomeric GQ vs duplex DNA. Spectroscopic studies, combined, point to end-stacking and porphyrin self-association as major binding modes. This work advances our understanding of ligand interactions with GQ DNA

    Observable form of pulses emitted from relativistic collapsing objects

    Full text link
    In this work, we discuss observable characteristics of the radiation emitted from a surface of a collapsing object. We study a simplified model in which a radiation of massless particles has a sharp in time profile and it happens at the surface at the same moment of comoving time. Since the radiating surface has finite size the observed radiation will occur during some finite time. Its redshift and bending angle are affected by the strong gravitational field. We obtain a simple expression for the observed flux of the radiation as a function of time. To find an explicit expression for the flux we develop an analytical approximation for the bending angle and time delay for null rays emitted by a collapsing surface. In the case of the bending angle this approximation is an improved version of the earlier proposed Beloborodov-Leahy-approximation. For rays emitted at R>2RgR > 2R_g the accuracy of the proposed improved approximations for the bending angle and time delay is of order (or less) than 2-3%. By using this approximation we obtain an approximate analytical expression for the observed flux and study its properties.Comment: 13 pages, 10 figures;Typos in equations and refrences are corrected. No change in the results and discussion

    Nanopillar Arrays on Semiconductor Membranes as Electron Emission Amplifiers

    Full text link
    A new transmission-type electron multiplier was fabricated from silicon-on-insulator (SOI) material by integrating an array of one dimensional (1D) silicon nanopillars onto a two dimensional (2D) silicon membrane. Primary electrons are injected into the nanopillar-membrane system from the flat surface of the membrane, while electron emission from the other side is probed by an anode. The secondary electron yield (SEY) from nanopillars is found to be about 1.8 times that of plane silicon membrane. This gain in electron number is slightly enhanced by the electric field applied from the anode. Further optimization of the dimensions of nanopillars and membrane and application of field emission promise an even higher gain for detector applications and allow for probing of electronic/mechanical excitations in nanopillar-membrane system excited by incident particles or radiation.Comment: 4 figure

    HST Observations of the Gravitationally Lensed Cloverleaf Broad Absorption Line QSO H1413+1143: Modeling the Lens

    Get PDF
    We investigate gravitational lens models for the quadruply-lensed Cloverleaf BAL QSO H1413+1143 based on the HST WFPC/WFPC2 astrometric and photometric data of the system by Turnshek et al. and the HST NICMOS-2 data by Falco et al. The accurate image positions and the dust-extinction-corrected relative amplifications, along with a possible detection of the lensing galaxy in the infrared, permit more accurate lens models than were previously possible. While more recent models are qualitatively consistent with the HST data, none of the previous models considered the dust-extinction-corrected relative amplifications of the image components. We use the power-law elliptical mass model to fit the HST data. We find that a single elliptical galaxy perturbed by an external shear can fit the image positions within the observational uncertainties; however, the predicted relative magnifications are only roughly consistent with the observational relative amplifications. We find that a primary galaxy combined with a secondary galaxy in the vicinity of the Cloverleaf or a cluster centered (south-)west of the Cloverleaf can fit both the image positions and relative amplifications within the observational uncertainties. We discuss future observations which could be used to test and/or further constrain lens models of the Cloverleaf.Comment: 23 pages (in aaspp.sty) including 5 tables and 3 figures, Accepted for publication in the Astrophysical Journa

    Spin Hall torque magnetometry of Dzyaloshinskii domain walls

    Get PDF
    Current-induced domain wall motion in the presence of the Dzyaloshinskii-Moriya interaction (DMI) is experimentally and theoretically investigated in heavy-metal/ferromagnet bilayers. The angular dependence of the current-induced torque and the magnetization structure of Dzyaloshinskii domain walls are described and quantified simultaneously in the presence of in-plane fields. We show that the DMI strength depends strongly on the heavy metal, varying by a factor of 20 between Ta and Pa, and that strong DMI leads to wall distortions not seen in conventional materials. These findings provide essential insights for understanding and exploiting chiral magnetism for emerging spintronics applications

    Spin relaxation in mesoscopic superconducting Al wires

    Full text link
    We studied the diffusion and the relaxation of the polarized quasiparticle spins in superconductors. To that end, quasiparticles of polarized spins were injected through an interface of a mesoscopic superconducting Al wire in proximity contact with an overlaid ferromagnetic Co wire in the single-domain state. The superconductivity was observed to be suppressed near the spin-injecting interface, as evidenced by the occurrence of a finite voltage for a bias current below the onset of the superconducting transition. The spin diffusion length, estimated from finite voltages over a certain length of Al wire near the interface, was almost temperature independent in the temperature range sufficiently below the superconducting transition but grew as the transition temperature was approached. This temperature dependence suggests that the relaxation of the spin polarization in the superconducting state is governed by the condensation of quasiparticles to the paired state. The spin relaxation in the superconducting state turned out to be more effective than in the normal state.Comment: 9 pages, 8 figure
    corecore