7,235 research outputs found

    Theoretical study of X-ray absorption of three-dimensional topological insulator Bi2Se3\mathrm{Bi}_2\mathrm{Se}_3

    Full text link
    X-ray absorption edge singularity which is usually relevant for metals is studied for the prototype topological insulator Bi2Se3\mathrm{Bi}_2\mathrm{Se}_3. The generalized integral equation of Nozi\`eres and Dominicis type for X-ray edge singularity is derived and solved. The spin texture of surfaces states causes a component of singularity dependent on the helicity of the spin texture. It also yields another component for which the singularity from excitonic processes is absent.Comment: RevTeX 4.1. 4 pages, no figur

    X-ray edge singularity of bilayer graphene

    Full text link
    The X-ray edge singularity of bilayer graphene is studied by generalizing the path integral approach based on local action which was employed for monolayer graphene. In sharp contrast to the case of monolayer graphene, the bilayer graphene is found to exhibit the edge singularity even at half-filling and its characteristics are determined by interlayer coupling. At finite bias the singular behaviors sensitively depend on the relative magnitude of fermi energy and applied bias, which is due to the peculiar shape of energy band at finite bias.Comment: RevTeX 4.1, 4 pages. No figur

    Parity-violating nucleon-nucleon interaction from different approaches

    Full text link
    Two-pion exchange parity-violating nucleon-nucleon interactions from recent effective field theories and earlier fully covariant approaches are investigated. The potentials are compared with the idea to obtain better insight on the role of low-energy constants appearing in the effective field theory approach and the convergence of this one in terms of a perturbative series. The results are illustrated by considering the longitudinal asymmetry of polarized protons scattering off protons, p+p>p+p\vec{p}+p -> p+p, and the asymmetry of the photon emission in radiative capture of polarized neutrons by protons, n+p>d+γ\vec{n}+p -> d+\gamma.Comment: 31 page

    Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field

    Get PDF
    Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems

    Limits on the evolution of galaxies from the statistics of gravitational lenses

    Full text link
    We use gravitational lenses from the Cosmic Lens All-Sky Survey (CLASS) to constrain the evolution of galaxies since redshift z1z \sim 1 in the current \LCDM cosmology. This constraint is unique as it is based on a mass-selected lens sample of galaxies. Our method of statistical analysis is the same as in Chae (2003). We parametrise the early-type number density evolution in the form of (1+z)νn(1+z)^{\nu_n} and the velocity dispersion as (1+z)νv(1+z)^{\nu_v}. We find that νn=0.110.89+0.82\nu_n=-0.11^{+0.82}_{-0.89} (1σ1\sigma) if we assume νv=0\nu_v =0, implying that the number density of early-type galaxies is within 50% to 164% of the present-day value at redshift z=1z=1. Allowing the velocity dispersion to evolve, we find that νv=0.40.4+0.5\nu_v=-0.4^{+0.5}_{-0.4} (1σ1\sigma), indicating that the velocity dispersion must be within 57% and 107% of the present-day value at z=1z=1. These results are consistent with the early formation and passive evolution of early-type galaxies. More stringent limits from lensing can be obtained from future large lens surveys and by using very high-redshift quasars (z \ga 5) such as those found from the Sloan Digital Sky Survey.Comment: 10 pages (preprint format), 2 figures, ApJL in press (December 20th issue

    Slave-boson approach to the infinite-U Anderson-Holstein impurity model

    Full text link
    The infinite-UU Anderson-Holstein impurity model is studied with a focus on the interplay between the strong electron correlation and the weak electron-phonon interaction. The slave boson method has been employed in combination with the large degeneracy expansion (1/N) technique. The charge and spin susceptibilities and the phonon propagator are obtained in the approximation scheme where the saddle point configuration and the Gaussian 1/N fluctuations are taken into account. The spin susceptibility is found not to be renormalized by electron-phonon interaction, while the charge susceptibility is renormalized. From the renormalized charge susceptibility the Kondo temperature is found to increase by the electron-phonon interaction. It turns out that the bosonic 1/N Gaussian fluctuations play a very crucial role, in particular, for the phonon propagator.Comment: 12pages, 3 figures. Published in Physical Review

    X-ray edge problem of graphene

    Full text link
    The X-ray edge problem of graphene with the Dirac fermion spectrum is studied. At half-filling the linear density of states suppresses the singular response of the Fermi liquid, while away from half-filling the singular features of the Fermi liquid reappear. The crossover behavior as a function of the Fermi energy is examined in detail. The exponent of the power-law absorption rate depends both on the intra- and inter-valley scattering, and it changes as a function of the Fermi energy, which may be tested experimentally.Comment: 7 pages, 1 figur

    Effective Potential for Uniform Magnetic Fields through Pauli Interaction

    Full text link
    We have calculated the explicit form of the real and imaginary parts of the effective potential for uniform magnetic fields which interact with spin-1/2 fermions through the Pauli interaction. It is found that the non-vanishing imaginary part develops for a magnetic field stronger than a critical field, whose strength is the ratio of the fermion mass to its magnetic moment. This implies the instability of the uniform magnetic field beyond the critical field strength to produce fermion pairs with the production rate density w(x)=m424π(μBm1)3(μBm+3)w(x)=\frac{m^{4}}{24\pi}(\frac{|\mu B|}{m}-1)^{3}(\frac{|\mu B|}{m}+3) in the presence of Pauli interaction.Comment: 9 pages with 1 figur

    Infinite Lorentz boost along the M-theory circle and non-asymptotically flat solutions in supergravities

    Full text link
    Certain non-asymptotically flat but supersymmetric classical solution of the type IIA supergravity can be interpreted as the infinitely-boosted version of the D-particle solution along the M-theory circle. By a chain of T-dual transformations, this analysis also applies to yield non-asymptotically flat solutions from the asymptotically flat and (non)-extremal solutions with intersecting D-strings and D five-branes of the type IIB supergravity compactified on a five-torus. Under S-duality, the non-asymptotically flat solutions in this context can in particular be used to describe the (1+1)-dimensional CGHS type black holes via spontaneous compactifications.Comment: 14 pages, Revte

    Instability of two-dimensional heterotic stringy black holes

    Get PDF
    We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of m2>q2m^{2}>q^{2}, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case m2=q2m^{2}=q^{2} is stable.Comment: 11 pages, LaTe
    corecore