608 research outputs found

    Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Therapy Promotes Functional Recovery of Contused Rat Spinal Cord through Enhancement of Endogenous Cell Proliferation and Oligogenesis

    Get PDF
    Numerous studies have shown the benefits of mesenchymal stem cells (MSCs) on the repair of spinal cord injury (SCI) model and on behavioral improvement, but the underlying mechanisms remain unclear. In this study, to investigate possible mechanisms by which MSCs contribute to the alleviation of neurologic deficits, we examined the potential effect of human umbilical cord blood-derived MSCs (hUCB-MSCs) on the endogenous cell proliferation and oligogenesis after SCI. SCI was injured by contusion using a weight-drop impactor and hUCB-MSCs were transplanted into the boundary zone of the injured site. Animals received a daily injection of bromodeoxyuridine (BrdU) for 7 days after treatment to identity newly synthesized cells of ependymal and periependymal cells that immunohistochemically resembled stem/progenitor cells was evident. Behavior analysis revealed that locomotor functions of hUCB-MSCs group were restored significantly and the cavity volume was smaller in the MSCs-transplanted rats compared to the control group. In MSCs-transplanted group, TUNEL-positive cells were decreased and BrdU-positive cells were significantly increased rats compared with control group. In addition, more of BrdU-positive cells expressed neural stem/progenitor cell nestin and oligo-lineage cell such as NG2, CNPase, MBP and glial fibrillary acidic protein typical of astrocytes in the MSC-transplanted rats. Thus, endogenous cell proliferation and oligogenesis contribute to MSC-promoted functional recovery following SCI

    Cryptotanshinone chemosensitivity potentiation by TW-37 in human oral cancer cell lines by targeting STAT3–Mcl-1 signaling

    Get PDF
    Abstract Background Despite being one of the leading cancer types in the world, the diagnosis of oral cancer and its suitable therapeutic options remain limited. This study aims to investigate the single and chemosensitizing effects of TW-37, a BH3 mimetic in oral cancer, on human oral cancer cell lines. Methods We assessed the single and chemosensitizing effects of TW-37 in vitro using trypan blue exclusion assay, Western blotting, DAPI staining, Annexin V–FITC/PI double staining, and quantitative real-time PCR. Mcl-1 overexpression models were established by transforming vector and transient transfection was performed to test for apoptosis Results TW-37 enhanced the cytotoxicity of human oral cancer cell lines by inducing caspase-dependent apoptosis, which correlates with the reduction of the myeloid cell leukemia-1 (Mcl-1) expression via transcriptional and post-translational regulation. The ectopic expression of Mcl-1 partially attenuated the apoptosis-inducing capacity of TW-37 in human oral cancer cell lines. Besides, TW-37 decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705 and nuclear translocation in human oral cancer cell lines at the early time points. Furthermore, TW-37 potentiated chemosusceptibility of cryptotanshinone in human oral cancer cell lines by suppressing STAT3–Mcl-1 signaling compared with either TW-37 or cryptotanshinone alone, resulting in potent apoptosis. Conclusions This study not only unravels the single and chemosensitizing effects of TW-37 for treatment of human oral cancer but also highlights the likelihood of TW-37 as a good therapeutic strategy to enhance the prognosis of patients with oral cancer in the future

    Complete genome sequence of functional probiotic candidate Lactobacillus amylovorus CACC736

    Get PDF
    Lactobacillus amylovorus CACC736 was originated from swine feces in Korea. The complete genome sequences of the strain contained one circular chromosome (2,057,809 base pair [bp]) with 38.2% guanine-cytosine (GC) content and two circular plasmids, namely, pCACC736-1 and pCACC736-2. The predicted protein-coding genes, which are encoding the clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins, biosynthesis of bacteriocin (helveticin J), and the related proteins of the bile, acid tolerance. Notably, the genes related to vitamin B-group biosynthesis (riboflavin and cobalamin) were also found in L. amylovorus CACC736. Collectively, the complete genome sequence of the L. amylovorus CACC736 will aid in the development of functional probiotics in the animal industry

    PI3K-mTOR-S6K Signaling Mediates Neuronal Viability via Collapsin Response Mediator Protein-2 Expression

    Get PDF
    Collapsin response mediator protein (CRMP)-2 and the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway are associated with common physiological functions such as neuronal polarity, axonal outgrowth and synaptic strength, as well as various brain disorders including epilepsy. But, their regulatory and functional links are unclear. Alterations in CRMP-2 expression that lead to its functional changes are implicated in brain disorders such as epilepsy. Here, we investigate whether changes in CRMP-2 expression, possibly regulated by mTOR-related signaling, correlates with neuronal growth and viability. Inhibition of mTOR and/or phosphoinositol-3-kinase (PI3K) led to deceased p-S6K, and p-S6 signals also reduced CRMP-2 expression. These changes corresponded to inhibition of neuronal viability and proliferation in cultured hippocampal HT-22 cells under both basal serum-free and serum- or insulin-induced mTOR pathway-activated conditions. CRMP-2 expression tended to be increased by mTOR activation, indicated by an increase in p-S6/S6 level, in pentylentetrazole (PTZ)-induced epileptic rat hippocampal tissues was also significantly reduced by mTOR inhibition. Knockdown of CRMP-2 by si-RNA reduced the neuronal viability without changes in mTOR signaling, and overexpression of CRMP-2 recovered the glutamate-induced neurotoxicity and decrease of mTOR signaling in HT-22 cells. In conclusion, CRMP-2 protein expression controlled by the PI3K-mTOR-S6K signaling axis exerts its important functional roles in neuronal growth and survival

    Impacts of coexisting bronchial asthma on severe exacerbations in mild-to-moderate COPD : results from a national database

    Get PDF
    Acknowledgments The authors would like to thank Kyungjoo Kim for the confident statistical analyses in this work. This study was supported by a grant (2014P3300300) from the Korea Centers for Disease Control and Prevention. The abstract of this paper was presented at the Asian Pacific Society of Respirology 20th Congress as an oral presentation with interim findings. The poster’s abstract was published in “Poster Abstracts” in Respirology.Peer reviewedPublisher PD

    Emerging Need for Vaccination against Hepatitis A Virus in Patients with Chronic Liver Disease in Korea

    Get PDF
    Vaccination against hepatitis A virus (HAV) is recommended for patients with chronic liver disease (CLD), but this has been deemed unnecessary in Korea since the immunity against HAV was almost universal in adults. However, this practice has never been reevaluated with respect to the changing incidence of adult acute hepatitis A. We retrospectively reviewed the medical records of 278 patients with acute hepatitis A diagnosed from January 1995 to November 2005 and prospectively tested 419 consecutive CLD patients from July to December 2005 for the presence of IgG anti-HAV. The number of patients with acute hepatitis A has markedly increased recently, and the proportion of adult patients older than 30 yr has been growing from 15.2% during 1995-1999, to 28.4% during 2000-2005 (p=0.019). Among 419 CLD patients, the seroprevalences of IgG anti-HAV were 23.1% for those between 26 and 30 yr, 64% between 31 and 35 yr, and 85.0% between 36 and 40 yr. These data demonstrate that immunity against HAV is no more universal in adult and substantial proportion of adult CLD patients are now at risk of HAV infection in Korea. Therefore, further study on seeking proper strategy of active immunization against HAV is warranted in these populations

    Sulforaphane Increases Cyclin-Dependent Kinase Inhibitor, p21 Protein in Human Oral Carcinoma Cells and Nude Mouse Animal Model to Induce G2/M Cell Cycle Arrest

    Get PDF
    Previously, our group reported that sulforaphane (SFN), a naturally occurring chemopreventive agent from cruciferous vegetables, effectively inhibits the proliferation of KB and YD-10B human oral squamous carcinoma cells by causing apoptosis. In this study, treatment of 20 and 40 µM of SFN for 12 h caused a cell cycle arrest in the G2/M phase. Cell cycle arrest induced by SFN was associated with a significant increase in the p21 protein level and a decrease in cyclin B expression, but there was no change in the cyclin A protein level. In addition, SFN increased the p21 promoter activity significantly. Furthermore, SFN induced p21 protein expression in a nude mouse xenograft model suggesting that SFN is a potent inducer of the p21 protein in human oral squamous carcinoma cells. These findings show that SFN is a promising candidate for molecular-targeting chemotherapy against human oral squamous cell carcinoma
    corecore