20 research outputs found

    Cerebral oximetry in preterm infants:An agenda for research with a clear clinical goal

    Get PDF
    Preterm birth constitutes a major cause of death before 5 years of age and it is a major cause of neurodevelopmental impairment across the world. Preterm infants are most unstable during the transition between fetal and newborn life during the first days of life and most brain damage occurs in this period. The brain of the preterm infant is accessible for tissue oximetry by near-infrared spectroscopy. Cerebral oximetry has the potential to improve the long-term outcome by helping to tailor the support of respiration and circulation to the individual infant’s needs, but the evidence is still lacking. The goals for research include testing the benefit and harms of cerebral oximetry in large-scale randomized trials, improved definition of the hypoxic threshold, better understanding the effects of intensive care on cerebral oxygenation, as well as improved precision of oximeters and calibration among devices or standardization of values in the hypoxic range. These goals can be pursued in parallel

    Cerebral near-infrared spectroscopy monitoring (NIRS) in children and adults: a systematic review with meta-analysis

    Full text link
    Background: Cerebral oxygenation monitoring utilising near-infrared spectroscopy (NIRS) is increasingly used to guide interventions in clinical care. The objective of this systematic review with meta-analysis and Trial Sequential Analysis is to evaluate the effects of clinical care with access to cerebral NIRS monitoring in children and adults versus care without. Methods: This review conforms to PRISMA guidelines and was registered in PROSPERO (CRD42020202986). Methods are outlined in our protocol (doi: 10.1186/s13643-021-01660-2). Results: Twenty-five randomised clinical trials were included (2606 participants). All trials were at a high risk of bias. Two trials assessed the effects of NIRS during neonatal intensive care, 13 during cardiac surgery, 9 during non-cardiac surgery and 1 during neurocritical care. Meta-analyses showed no significant difference for all-cause mortality (RR 0.75, 95% CI 0.51-1.10; 1489 participants; I2 = 0; 11 trials; very low certainty of evidence); moderate or severe, persistent cognitive or neurological deficit (RR 0.74, 95% CI 0.42-1.32; 1135 participants; I2 = 39.6; 9 trials; very low certainty of evidence); and serious adverse events (RR 0.82; 95% CI 0.67-1.01; 2132 participants; I2 = 68.4; 17 trials; very low certainty of evidence). Conclusion: The evidence on the effects of clinical care with access to cerebral NIRS monitoring is very uncertain. Impact: The evidence of the effects of cerebral NIRS versus no NIRS monitoring are very uncertain for mortality, neuroprotection, and serious adverse events. Additional trials to obtain sufficient information size, focusing on lowering bias risk, are required. The first attempt to systematically review randomised clinical trials with meta-analysis to evaluate the effects of cerebral NIRS monitoring by pooling data across various clinical settings. Despite pooling data across clinical settings, study interpretation was not substantially impacted by heterogeneity. We have insufficient evidence to support or reject the clinical use of cerebral NIRS monitoring

    The effects of cerebral oximetry in mechanically ventilated newborns: a protocol for the SafeBoosC-IIIv randomised clinical trial

    Full text link
    Background The SafeBoosC project aims to test the clinical value of non-invasive cerebral oximetry by near-infrared spectroscopy in newborn infants. The purpose is to establish whether cerebral oximetry can be used to save newborn infants’ lives and brains or not. Newborns contribute heavily to total childhood mortality and neonatal brain damage is the cause of a large part of handicaps such as cerebral palsy. The objective of the SafeBoosC-IIIv trial is to evaluate the benefits and harms of cerebral oximetry added to usual care versus usual care in mechanically ventilated newborns. Methods/design SafeBoosC-IIIv is an investigator-initiated, multinational, randomised, pragmatic phase-III clinical trial. The inclusion criteria will be newborns with a gestational age more than 28 + 0 weeks, postnatal age less than 28 days, predicted to require mechanical ventilation for at least 24 h, and prior informed consent from the parents or deferred consent or absence of opt-out. The exclusion criteria will be no available cerebral oximeter, suspicion of or confirmed brain injury or disorder, or congenital heart disease likely to require surgery. A total of 3000 participants will be randomised in 60 neonatal intensive care units from 16 countries, in a 1:1 allocation ratio to cerebral oximetry versus usual care. Participants in the cerebral oximetry group will undergo cerebral oximetry monitoring during mechanical ventilation in the neonatal intensive care unit for as long as deemed useful by the treating physician or until 28 days of life. The participants in the cerebral oximetry group will be treated according to the SafeBoosC treatment guideline. Participants in the usual care group will not receive cerebral oximetry and will receive usual care. We use two co-primary outcomes: (1) a composite of death from any cause or moderate to severe neurodevelopmental disability at 2 years of corrected age and (2) the non-verbal cognitive score of the Parent Report of Children’s Abilities-Revised (PARCA-R) at 2 years of corrected age. Discussion There is need for a randomised clinical trial to evaluate cerebral oximetry added to usual care versus usual care in mechanically ventilated newborns. Trial registration The protocol is registered at www.clinicaltrials.gov (NCT05907317; registered 18 June 2023)

    Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants:A protocol for the SafeBoosC randomised clinical phase III trial

    Get PDF
    Cerebral oxygenation monitoring may reduce the risk of death and neurologic complications in extremely preterm infants, but no such effects have yet been demonstrated in preterm infants in sufficiently powered randomised clinical trials. The objective of the SafeBoosC III trial is to investigate the benefits and harms of treatment based on near-infrared spectroscopy (NIRS) monitoring compared with treatment as usual for extremely preterm infants

    Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial.

    Get PDF
    BACKGROUND: Cerebral oxygenation monitoring may reduce the risk of death and neurologic complications in extremely preterm infants, but no such effects have yet been demonstrated in preterm infants in sufficiently powered randomised clinical trials. The objective of the SafeBoosC III trial is to investigate the benefits and harms of treatment based on near-infrared spectroscopy (NIRS) monitoring compared with treatment as usual for extremely preterm infants. METHODS/DESIGN: SafeBoosC III is an investigator-initiated, multinational, randomised, pragmatic phase III clinical trial. Inclusion criteria will be infants born below 28 weeks postmenstrual age and parental informed consent (unless the site is using 'opt-out' or deferred consent). Exclusion criteria will be no parental informed consent (or if 'opt-out' is used, lack of a record that clinical staff have explained the trial and the 'opt-out' consent process to parents and/or a record of the parents' decision to opt-out in the infant's clinical file); decision not to provide full life support; and no possibility to initiate cerebral NIRS oximetry within 6 h after birth. Participants will be randomised 1:1 into either the experimental or control group. Participants in the experimental group will be monitored during the first 72 h of life with a cerebral NIRS oximeter. Cerebral hypoxia will be treated according to an evidence-based treatment guideline. Participants in the control group will not undergo cerebral oxygenation monitoring and will receive treatment as usual. Each participant will be followed up at 36 weeks postmenstrual age. The primary outcome will be a composite of either death or severe brain injury detected on any of the serial cranial ultrasound scans that are routinely performed in these infants up to 36 weeks postmenstrual age. Severe brain injury will be assessed by a person blinded to group allocation. To detect a 22% relative risk difference between the experimental and control group, we intend to randomise a cohort of 1600 infants. DISCUSSION: Treatment guided by cerebral NIRS oximetry has the potential to decrease the risk of death or survival with severe brain injury in preterm infants. There is an urgent need to assess the clinical effects of NIRS monitoring among preterm neonates. TRIAL REGISTRATION: ClinicalTrial.gov, NCT03770741. Registered 10 December 2018

    Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm

    Get PDF
    We compared absolute values of regional tissue hemoglobin saturation (StO(2)), reproducibility, and dynamic range of four different instruments on the forearm of adults. The sensors were repositioned 10 times on each subject. Dynamic range was estimated by exercise with subsequent arterial occlusion. Mean StO(2) was 70.1% ± 6.7 with INVOS 5100, 69.4% ± 5.0 with NIRO 200 NX, 63.4% ± 4.5 with NIRO 300, and 60.8% ± 3.6 with OxyPrem. The corresponding reproducibility S(w) was 5.4% (CI 4.4–6.9), 4.4% (CI 3.5–5.2), 4.1% (CI 3.3–4.9), and 2.7% (CI 2.2–3.2), respectively. The dynamic ranges ΔStO(2) were 45.0%, 46.8%, 44.8%, and 27.8%, respectively. In conclusion, the three commercial NIRS instruments showed different absolute values, whereas reproducibility and dynamic range were quite similar

    A comparison between two NIRS oximeters (INVOS, OxyPrem) using measurement on the arm of adults and head of infants after caesarean section

    No full text
    Previously the NIRS oximeter OxyPrem was calibrated by comparison to the INVOS in a blood-lipid phantom. The aim of the present study was to test this calibration clinically. During vasculur occlusions in 10 adults and after birth in 25 term infants the relationship was OxyPrem = 1.24 x INVOS - 23.6% and OxyPrem = 1.15 x INVOS - 16.2% on the adult arm and infant head, respectively. The precsion during steady state was 4.0% (CI 3.4% to 4.6%) and 3.4% (CI 2.9% to 3.9%) on the arm, and 6.7% (CI 5.9% to 7.6%) and 4.7% (CI 3.5% to 5.9%) on the infant head for OxyPrem and INVOS, respectively. We conclude that the calibration on the blood-lipid phantom was unsuccessful in achieving agreement in clinical measurements

    Cerebral Oximetry in Preterm Infants–To Use or Not to Use, That Is the Question

    No full text
    The Safeguarding the Brains of our smallest Children (SafeBoosC) project was initially established to test the patient-relevant benefits and harms of cerebral oximetry in extremely preterm infants in the setting of a randomized clinical trial. Extremely preterm infants constitute a small group of patients with a high risk of death or survival with brain injury and subsequent neurodevelopmental disability. Several cerebral oximeters are approved for clinical use, but the use of additional equipment may disturb and thereby possibly harm these vulnerable, immature patients. Thus, the mission statement of the consortium is “do not disturb—unless necessary.” There may also be more tangible risks such as skin breakdown, displacement of tubes and catheters due to more complicated nursing care, and mismanagement of cerebral oxygenation as a physiological variable. Other monitoring modalities have relevance for reducing the risk of hypoxic-ischemic brain injury occurring during acute illness and have found their place in routine clinical care without evidence from randomized clinical trials. In this manuscript, we discuss cerebral oximetry, pulse oximetry, non-invasive electric cardiometry, and invasive monitoring of blood pressure. We discuss the reliability of the measurements, the pathophysiological rationale behind the clinical use, the evidence of benefit and harms, and the costs. By examining similarities and differences, we aim to provide our perspective on the use or non-use of cerebral oximetry in newborn infants during intensive care
    corecore