2 research outputs found

    Genomics tools available for unravelling mechanisms underlying agronomical traits in strawberry with more to come

    Get PDF
    In the last few years, high-throughput genomics promised to bridge the gap between plant physiology and plant sciences. In addition, high-throughput genotyping technologies facilitate marker-based selection for better performing genotypes. In strawberry, Fragaria vesca was the first reference sequence obtained in the Rosoideae sub-family. This genome has a high level of synteny with genomes of other species of diploid and polyploid Fragaria, but it also provides a reference for species like Rubus and Rosa for functional genomics. Many tools for genetic, genomic and functional analyses were introduced over the last 10 years and these tools are still evolving. For genotyping, many studies have used simple sequence repeats (SSRs) but whole genome sequencing is now a mature technology and facilitates the development of genotyping chips and other genetic approaches such as genome wide association studies (GWAS). Furthermore, microarray-based technologies have been eclipsed by RNA-seq, the high-throughput sequencing of RNA. These new approaches have led to advances in our understanding of the genetically complex octoploid species, and have revolutionized functional genomics. For all genetic and genomic studies, novel material such as complex crosses such as NILs and EMS have appeared in addition to the classical segregating population. With all these tools, strawberry now emerges as a plant model, not only for studying fruit quality but also for deciphering the mechanisms controlling various aspects of plant biology. Selective examples will be described to illustrate the latest research on strawberry and what is coming from other model species.Peer reviewe

    Effects of LED light spectra on lettuce growth and nutritional composition

    No full text
    Year-round greenhouse production in northern latitudes depends on the use of artificial lighting. Light emitting diodes provide a promising means to save energy during cultivation as well as to modify the light spectrum to regulate the growth and quality of the crop. We compared the effects of light emitting diode lighting with different spectral compositions on the growth, development and nutritional quality of lettuce (Lactuca sativa L. ‘Frillice’). We show that warm-white and warm-white supplemented with blue spectra provide equal growth and product quality compared to conventional high-pressure sodium lighting in the absence and presence of daylight. Our data indicate that for biomass accumulation, the far-red component in the light spectrum is more critical than green light or the red/blue ratio. Furthermore, we demonstrate that a red + blue spectrum increases the concentration of several vitamins in lettuce. However, biomass accumulation using this spectrum was insufficient when daylight was excluded.Peer reviewe
    corecore