7 research outputs found

    Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is increasingly recognized as a systemic disease driven by alteration in the normal functioning of multiple metabolic pathways affecting all of the major carbon substrates, including amino acids. We found that human pulmonary hypertension patients (WHO Group I, PAH) exhibit systemic and pulmonary-specific alterations in glutamine metabolism, with the diseased pulmonary vasculature taking up significantly more glutamine than that of controls. Using cell culture models and transgenic mice expressing PAH-causing BMPR2 mutations, we found that the pulmonary endothelium in PAH shunts significantly more glutamine carbon into the tricarboxylic acid (TCA) cycle than wild-type endothelium. Increased glutamine metabolism through the TCA cycle is required by the endothelium in PAH to survive, to sustain normal energetics, and to manifest the hyperproliferative phenotype characteristic of disease. The strict requirement for glutamine is driven by loss of sirtuin-3 (SIRT3) activity through covalent modification by reactive products of lipid peroxidation. Using 2-hydroxybenzylamine, a scavenger of reactive lipid peroxidation products, we were able to preserve SIRT3 function, to normalize glutamine metabolism, and to prevent the development of PAH in BMPR2 mutant mice. In PAH, targeting glutamine metabolism and the mechanisms that underlie glutamine-driven metabolic reprogramming represent a viable novel avenue for the development of potentially disease-modifying therapeutics that could be rapidly translated to human studies

    Utility of echocardiography in predicting mortality in infants with severe bronchopulmonary dysplasia

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Objective: To determine the relationship between interventricular septal position (SP) and right ventricular systolic pressure (RVSP) and mortality in infants with severe BPD (sBPD). Study design: Infants with sBPD in the Children's Hospitals Neonatal Database who had echocardiograms 34-44 weeks' postmenstrual age (PMA) were included. SP and RVSP were categorized normal, abnormal (flattened/bowed SP or RVSP > 40 mmHg) or missing. Results: Of 1157 infants, 115 infants (10%) died. Abnormal SP or RVSP increased mortality (SP 19% vs. 8% normal/missing, RVSP 20% vs. 9% normal/missing, both p < 0.01) in unadjusted and multivariable models, adjusted for significant covariates (SP OR 1.9, 95% CI 1.2-3.0; RVSP OR 2.2, 95% CI 1.1-4.7). Abnormal parameters had high specificity (SP 82%; RVSP 94%), and negative predictive value (SP 94%, NPV 91%) for mortality. Conclusions: Abnormal SP or RVSP is independently associated with mortality in sBPD infants. Negative predictive values distinguish infants most likely to survive

    The Impact of Pulmonary Hypertension in Preterm Infants with Severe Bronchopulmonary Dysplasia through 1 Year

    No full text
    Objectives To assess the effect of pulmonary hypertension on neonatal intensive care unit mortality and hospital readmission through 1 year of corrected age in a large multicenter cohort of infants with severe bronchopulmonary dysplasia. Study design This was a multicenter, retrospective cohort study of 1677 infants born <32 weeks of gestation with severe bronchopulmonary dysplasia enrolled in the Children's Hospital Neonatal Consortium with records linked to the Pediatric Health Information System. Results Pulmonary hypertension occurred in 370 out of 1677 (22%) infants. During the neonatal admission, pulmonary hypertension was associated with mortality (OR 3.15, 95% CI 2.10-4.73, P < .001), ventilator support at 36 weeks of postmenstrual age (60% vs 40%, P < .001), duration of ventilation (72 IQR 30-124 vs 41 IQR 17-74 days, P < .001), and higher respiratory severity score (3.6 IQR 0.4-7.0 vs 0.8 IQR 0.3-3.3, P < .001). At discharge, pulmonary hypertension was associated with tracheostomy (27% vs 9%, P < .001), supplemental oxygen use (84% vs 61%, P < .001), and tube feeds (80% vs 46%, P < .001). Through 1 year of corrected age, pulmonary hypertension was associated with increased frequency of readmission (incidence rate ratio [IRR] = 1.38, 95% CI 1.18-1.63, P < .001). Conclusions Infants with severe bronchopulmonary dysplasia-associated pulmonary hypertension have increased morbidity and mortality through 1 year of corrected age. This highlights the need for improved diagnostic practices and prospective studies evaluating treatments for this high-risk population

    Pediatric Aerodigestive Medicine: Advancing Collaborative Care for Children with Oropharyngeal Dysphagia

    No full text
    OBJECTIVES: Aerodigestive disorders encompass various pathological conditions affecting the lungs, upper airway, and gastrointestinal tract in children. While advanced care has primarily occurred in specialty centers, many children first present to general pediatric gastroenterologists with aerodigestive symptoms necessitating awareness of these conditions. At the 2021 Annual North American Society for Pediatric Gastroenterology, Hepatology and Nutrition meeting, the aerodigestive Special Interest Group held a full-day symposium entitled, Pediatric Aerodigestive Medicine: Advancing Collaborative Care of Children with Aerodigestive Disorders. The symposium aimed to underline the significance of a multidisciplinary approach to achieve better outcomes for these complex patients. METHODS: The symposium brought together leading experts to highlight the growing aerodigestive field, promote new scientific and therapeutic strategies, share the structure and benefits of a multidisciplinary approach in diagnosing common and rare aerodigestive disorders, and foster multidisciplinary discussion of complex cases while highlighting the range of therapeutic and diagnostic options. In this article, we showcase the diagnostic and therapeutic approach to oropharyngeal dysphagia, one of the most common aerodigestive conditions, emphasizing the role of a collaborative model. CONCLUSIONS: The aerodigestive field has made significant progress and continues to grow due to a unique multidisciplinary, collaborative model of care for these conditions. Despite diagnostic and therapeutic challenges, the multidisciplinary approach has enabled and greatly improved efficient, high-quality, and evidence-based care for patients, including those with oropharyngeal dysphagia

    Structural mechanism of RPA loading on DNA during activation of a simple pre-replication complex

    No full text
    We report that during activation of the simian virus 40 (SV40) pre-replication complex, SV40 T antigen (Tag) helicase actively loads replication protein A (RPA) on emerging single-stranded DNA (ssDNA). This novel loading process requires physical interaction of Tag origin DNA-binding domain (OBD) with the RPA high-affinity ssDNA-binding domains (RPA70AB). Heteronuclear NMR chemical shift mapping revealed that Tag-OBD binds to RPA70AB at a site distal from the ssDNA-binding sites and that RPA70AB, Tag-OBD, and an 8-nucleotide ssDNA form a stable ternary complex. Intact RPA and Tag also interact stably in the presence of an 8-mer, but Tag dissociates from the complex when RPA binds to longer oligonucleotides. Together, our results imply that an allosteric change in RPA quaternary structure completes the loading reaction. A mechanistic model is proposed in which the ternary complex is a key intermediate that directly couples origin DNA unwinding to RPA loading on emerging ssDNA
    corecore