81 research outputs found

    Evolutionary History Of Subterranean Termites In The Geographic And Ecological Context Of The Appalachian Mountains In The United States

    Get PDF
    Termites in the genus Reticulitermes (Blattodea: Rhinotermitidae) are distributed across the eastern United States, including the southern Appalachian Mountains, a region incredibly rich in biodiversity. The eastern subterranean termite, Reticulitermes flavipes, has been uninentionally introduced to South America and Europe, and is predicted to further expand its geographic range. My goal was to determine how eco-evolutionary processes, operating at both long and short timescales, may have contributed to R. flavipes becoming an invasive species. I examined geographic and environmental influences at historical and contemporary timescales. To do this, I first determined the extent of niche divergence among three geographically overlapping Reticulitermes species, R. flavipes, R. malletei, and R. virginicus, and also identified the geographic areas and environmental conditions in which R. flavipes occurs to the exclusion of the other two species. Then, I assessed evidence for the influence of glacial-interglacial cycles on changes in the geographic distribution of R. flavipes, as well as potential genetic divergence within the species resulting from these past distributional shifts. In addition to historical eco-evolutionary processes, at the contemporary timescale I investigated how epigenetic mechanisms–specifically, DNA methylation–facilitate rapid responses to human-mediated disturbance of forest ecosystems. Finally, I developed a new landscape connectivity metric, MSconn, to help understand the effect spatial heterogeneity of environments plays on biological diversity at multiple levels of organization, from alleles to communities. In principle, MSconn can be integrated into an eco-evolutionary framework, making it possible to quantify the effect of biotic and abiotic environments on gene flow between populations, and vice versa, the effect of gene flow on species interactions within and between communities

    Ecological drivers of species distributions and niche overlap for three subterranean termite species in the southern Appalachian mountains, USA

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. In both managed and unmanaged forests, termites are functionally important members of the dead-wood-associated (saproxylic) insect community. However, little is known about regional-scale environmental drivers of geographic distributions of termite species, and how these environmental factors impact co-occurrence among congeneric species. Here we focus on the southern Appalachian Mountains-a well-known center of endemism for forest biota-and use Ecological Niche Modeling (ENM) to examine the distributions of three species of Reticulitermes termites (i.e., R. flavipes, R. virginicus, and R. malletei). To overcome deficiencies in public databases, ENMs were underpinned by field-collected high-resolution occurrence records coupled with molecular taxonomic species identification. Spatial overlap among areas of predicted occurrence of each species was mapped, and aspects of niche similarity were quantified. We also identified environmental factors that most strongly contribute to among-species differences in occupancy. Overall, we found that R. flavipes and R. virginicus showed significant niche divergence, which was primarily driven by dry-season precipitation. Also, all three species were most likely to co-occur in the mid-latitudes of the study area (i.e., northern Alabama and Georgia, eastern Tennessee and western North Carolina), which is an area of considerable topographic complexity. This work provides important baseline information for follow-up studies of local-scale drivers of these species’ distributions. It also identifies specific geographic areas where future assessments of the frequency of true syntopy vs. micro-allopatry, and associated interspecific competitive interactions, should be focused

    Identification of Eastern United States Reticulitermes Termite Species via PCR-RFLP, Assessed Using Training and Test Data

    Get PDF
    Reticulitermes termites play key roles in dead wood decomposition and nutrient cycling in forests. They also damage man-made structures, resulting in considerable economic loss. In the eastern United States, five species (R. flavipes, R. virginicus, R. nelsonae, R. hageni and R. malletei) have overlapping ranges and are difficult to distinguish morphologically. Here we present a molecular tool for species identification. It is based on polymerase chain reaction (PCR) amplification of a section of the mitochondrial cytochrome oxidase subunit II gene, followed by a three-enzyme restriction fragment length polymorphism (RFLP) assay, with banding patterns resolved via agarose gel electrophoresis. The assay was designed using a large set of training data obtained from a public DNA sequence database, then evaluated using an independent test panel of Reticulitermes from the Southern Appalachian Mountains, for which species assignments were determined via phylogenetic comparison to reference sequences. After refining the interpretive framework, the PCR-RFLP assay was shown to provide accurate identification of four co-occurring species (the fifth species, R. hageni, was absent from the test panel, so accuracy cannot yet be extended to training data). The assay is cost- and time-efficient, and will help improve knowledge of Reticulitermes species distributions

    Morphometrics Parallel Genetics in a Newly Discovered and Endangered Taxon of Galápagos Tortoise

    Get PDF
    Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva) exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data

    Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda

    Get PDF
    Copyright: © 2019 Schneider et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Tsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host\u27s population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections

    Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Glossina pallidipes </it>has been implicated in the spread of sleeping sickness from southeastern Uganda into Kenya. Recent studies indicated resurgence of <it>G. pallidipes </it>in Lambwe Valley and southeastern Uganda after what were deemed to be effective control efforts. It is unknown whether the <it>G. pallidipes </it>belt in southeastern Uganda extends into western Kenya. We investigated the genetic diversity and population structure of <it>G. pallidipes </it>in Uganda and western Kenya.</p> <p>Results</p> <p>AMOVA indicated that differences among sampling sites explained a significant proportion of the genetic variation. Principal component analysis and Bayesian assignment of microsatellite genotypes identified three distinct clusters: western Uganda, southeastern Uganda/Lambwe Valley, and Nguruman in central-southern Kenya. Analyses of mtDNA confirmed the results of microsatellite analysis, except in western Uganda, where Kabunkanga and Murchison Falls populations exhibited haplotypes that differed despite homogeneous microsatellite signatures. To better understand possible causes of the contrast between mitochondrial and nuclear markers we tested for sex-biased dispersal. Mean pairwise relatedness was significantly higher in females than in males within populations, while mean genetic distance was lower and relatedness higher in males than females in between-population comparisons. Two populations sampled on the Kenya/Uganda border, exhibited the lowest levels of genetic diversity. Microsatellite alleles and mtDNA haplotypes in these two populations were a subset of those found in neighboring Lambwe Valley, suggesting that Lambwe was the source population for flies in southeastern Uganda. The relatively high genetic diversity of <it>G. pallidipes </it>in Lambwe Valley suggest large relict populations remained even after repeated control efforts.</p> <p>Conclusion</p> <p>Our research demonstrated that <it>G. pallidipes </it>populations in Kenya and Uganda do not form a contiguous tsetse belt. While Lambwe Valley appears to be a source population for flies colonizing southeastern Uganda, this dispersal does not extend to western Uganda. The complicated phylogeography of <it>G. pallidipes </it>warrants further efforts to distinguish the role of historical and modern gene flow and possible sex-biased dispersal in structuring populations.</p

    Phylogeography and Population Structure of Glossina fuscipes fuscipes in Uganda: Implications for Control of Tsetse

    Get PDF
    Glossina fuscipes fuscipes is the most common species of tsetse in Uganda, where it transmits human sleeping sickness and nagana, a related disease of cattle. A consortium of African countries dedicated to controlling these diseases is poised to begin area wide control of tsetse, but a critical question remains: What is the most appropriate geographical scale for these activities? To address this question, we used population genetics to determine the extent of linkage between populations of tsetse confined to discrete patches of riverine habitat. Our results suggest that Uganda was colonized by two distinct lineages of G. f. fuscipes, which now co-occur only in a narrow band across central Uganda. Evidence for interbreeding at the zone of contact and movement of genes from the south to the north suggest that this historical genetic structure may dissolve in the future. At smaller scales, we have demonstrated that exchange of genes among neighboring populations via dispersal is at equilibrium with the differentiating force of genetic drift. Our results highlight the need for investment in vector control programs that account for the linkage observed among tsetse populations. Given its genetic isolation and its location at the far edge of G. fuscipes' range, the Lake Victoria region appears to be an appropriate target for area wide control

    Subterranean Termites in the Appalachian Mountains: Responding to Rapid Climate Change by Regulating Gene Expression

    No full text
    Subterranean termites of the genus Reticulitermes are found in every state in the continental United States, and one species in particular has been very successful in establishing itself and expanding its geographic distribution. Reticulitemes flavipes populations have colonized geographic regions with environmental conditions different from those experienced by ancestral populations. In order to infer how R. flavipes populations have accomplished this, one objective of my research has been to determine historical and current dispersal patterns, as well as the environmental conditions associated with genetic variation in R. flavipes. By identifying the geographic sources of R. flavipes populations as well as the geographic spread through evolutionary time, my research is aimed at inferring the role climate change (both historical climate change and present-day rapid climate change) has played in shifting the geographic distribution of R. flavipes, as well as shaping the species’ genetic variation and affecting its gene expression patterns. Indeed, the other objective of my research is to investigate genetic mechanisms that enable termites to tolerate new environments, as this would help predict potential future changes in termite distributions, including responses to rapid climate change by modulating gene expression
    corecore