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Abstract: In both managed and unmanaged forests, termites are functionally important members
of the dead-wood-associated (saproxylic) insect community. However, little is known about
regional-scale environmental drivers of geographic distributions of termite species, and how these
environmental factors impact co-occurrence among congeneric species. Here we focus on the southern
Appalachian Mountains—a well-known center of endemism for forest biota—and use Ecological
Niche Modeling (ENM) to examine the distributions of three species of Reticulitermes termites (i.e.,
R. flavipes, R. virginicus, and R. malletei). To overcome deficiencies in public databases, ENMs were
underpinned by field-collected high-resolution occurrence records coupled with molecular taxonomic
species identification. Spatial overlap among areas of predicted occurrence of each species was
mapped, and aspects of niche similarity were quantified. We also identified environmental factors that
most strongly contribute to among-species differences in occupancy. Overall, we found that R. flavipes
and R. virginicus showed significant niche divergence, which was primarily driven by summer
temperature. Also, all three species were most likely to co-occur in the mid-latitudes of the study
area (i.e., northern Alabama and Georgia, eastern Tennessee and western North Carolina), which is
an area of considerable topographic complexity. This work provides important baseline information
for follow-up studies of local-scale drivers of these species’ distributions. It also identifies specific
geographic areas where future assessments of the frequency of true syntopy vs. micro-allopatry, and
associated interspecific competitive interactions, should be focused.

Keywords: biodiversity; biogeography; competitive exclusion; ecological niche model; molecular
taxonomic identification; PCR-RFLP; Reticulitermes; saproxylic; species richness

1. Introduction

1.1. The Southern Appalachian Mountains: A Center of Endemism for Forest Biota

The southern Appalachian Mountains, extending latitudinally from northeast Alabama to
northwest Virginia, are some of the oldest uplands in North America. These mountains have been
exposed and unglaciated for over 100 million years [1]. Steep altitudinal precipitation gradients,
a complex heavily dissected topography, and a humid, temperate climate, have shaped southern
Appalachian forests into some of the most diverse environments in the eastern United States. [2]. While
deciduous oak-hickory forests dominate much of the mid-elevation landscape [2], high elevations
(above 1400 m) support spruce-fir forests [3], whereas mesic coves support hemlock, and pines are
commonly found at xeric low- to mid-elevations [4].

The southern Appalachian Mountains are incredibly rich in biodiversity [5]. The region is thought
to have served as a major Pleistocene refuge for numerous species. Past climatic cycles have affected
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distributions of forest biota, resulting in major range shifts or local extinction. Following the Last
Glacial Maximum (ca. 21,000 years ago), recolonization is thought to have occurred relatively rapidly,
from 7000–16,000 years ago [6–10]. The southern Appalachian Mountains are a well-known center
of endemism for salamanders and other amphibians [11,12]. However, there is increasing evidence
of short-range endemism in other groups, including dead wood-associated forest invertebrates (e.g.,
millipedes [13,14], cockroaches [15,16], and centipedes [17]).

1.2. Subterranean Termites: Functionally Important Ecosystem Service Providers in Temperate Forests

Dead-wood-dependent (saproxylic) arthropods play critical roles in maintaining healthy,
productive forests by contributing to the decomposition of fallen trees and thus driving nutrient
cycling that affects organisms at all trophic levels [18–22]. Indeed, rotting logs may be one of the most
stable, thermally buffered, above-ground microhabitats that exist in forests, and the decomposition
process has successional stages, facilitated by wood-feeding and wood-boring invertebrates [21,23].
Termites are some of the first to colonize a rotting log, and through feeding and tunneling activities of
the worker caste, the dead-wood substrate is modified by the creation of galleries. Once established,
these facilitate colonization by larger wood-feeding invertebrates [24]. Ultimately, the ecosystem
engineering activities of termites contribute to enhancing the internal heterogeneity of logs, making
them habitable by a diverse array of saproxylic species.

Termites in the genus Reticulitermes (Blattodea: Rhinotermitidae) are broadly distributed
across the eastern United States. Morphological separation of species is notoriously difficult [25],
particularly given that only the worker caste can usually be readily sampled. To address this, we
developed an efficient molecular assay (i.e., polymerase chain reaction (PCR) amplification of a
short region of mitochondrial cytochrome oxidase subunit II (COII) gene, followed by screening of
restriction-fragment-length polymorphism (RFLP) banding profiles [26]) that can be used to distinguish
each of the five eastern United States species. In the southern Appalachians, several Reticulitermes
species can co-occur locally. However, true syntopy (i.e., two species co-inhabiting the same rotting
log) appears to be very rare, but reported instances of fine-scale sampling have been limited.

1.3. Ecological Niche Models: Efficient Tools for Predicting Organismal Distributions

Ecological niche models (ENMs) are broadly useful spatially explicit analytical tools that relate
species occurrence data with environmental variables, such as climatic temperature and precipitation
data [27], or topographic and land cover data. Once constructed, ENMs generate maps of estimated
habitat suitability, and can be used to describe the historical, current, and future climate space
for a given species. For example, ENMs have been used to identify areas of high conservation
importance [28–30], predict climate change effects on geographic ranges of species [31,32], as well as
determine potential threats of invasive species [33,34]. These analytical tools are becoming widely
used owing to the increasing accessibility of climatic data via public databases [35–37]. An important
assumption when using ENMs to predict historical or future distributions is niche conservatism (i.e.,
the stability of ecological niches over time) [38]. However, evidence suggests that niche conservatism
is common among closely related species [39–41], and the risks of erroneous inferences are further
reduced when focusing only on contemporary climate and occurrence data (i.e., when reconstructing
present-day ENMs).

1.4. The Current State of Knowledge about Subterranean Termite Distributions, and Goals of this Study

There is a general lack of data on the natural distributions of termites in temperate forests,
given that most research has focused on damage that termites cause to man-made wooden structures.
Accordingly, occurrence records mostly come from urban areas, and they are also of low resolution
(e.g., presence/absence in a given county). Notwithstanding these limitations, Maynard et al. [42]
recently provided valuable insights into the role of climatic (temperature and precipitation) variables
in influencing distributions of termites in the eastern United States. Specifically, those authors
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performed ENM for two Reticulitermes species (R. flavipes and R. virginicus) and the invasive Formosan
subterranean termite, Coptotermes formosanus. Furthermore, they synthesized pre-existing knowledge
to identify the influence on termite distributions of biotic factors, such as tree species and wood traits,
fungal preferences, phenology of predatory ants, and competitive asymmetries among coexisting
termite species. While interspecific competition may result in spatial or temporal separation which
could lead to niche divergence, to date, very little is known about niche partitioning in subterranean
termites and the environmental factors that may lead to niche divergence.

In the present paper, we aimed to generate new insights into regional-scale environmental
drivers of geographic distributions of termite species, and how these environmental factors impact
co-occurrence among congeneric species. Focusing on the southern Appalachian Mountains and
surrounding areas, we performed an ENM-based evaluation of niche divergence among the three most
common Reticulitermes species in the eastern United States. In addition to identifying niche divergence,
if present, we aimed to determine the environmental factors driving niche divergence among species.

2. Materials and Methods

2.1. Termite Sampling, Species Identification, and Ecological Niche Modeling

From 2012 to 2016, we collected Reticulitermes termites from 132 sites across the southern
Appalachians Mountains and surrounding areas (Table S1; Figure S1). At most sites, termite workers
were collected from a single rotting log at an intermediate to late stage of decay. However, at 10
sites, termites were also collected from additional logs within ~30 m of one another (i.e., samples
came from a total of 2 logs at 8 sites, 3 logs at 1 site, and 4 logs at 1 site; Table S1). Owing to the
close proximity of these clustered logs (i.e., at or near the typical error associated with a handheld
GPS unit), the same coordinates were assigned to them, but specimen collections were assigned
log-specific identifiers. Molecular taxonomic identifications were based on a single termite per rotting
log, using Garrick et al.’s [26] PCR-RFLP assay. Briefly, a short (376-bp) region of the mitochondrial
COII gene was amplified (using PCR primers RetCo2-F and RetCo2-R), and products were then
sequentially digested with three restriction enzymes (RsaI, TaqI, and MspI), which in combination
generate diagnostic species-specific banding patterns. Ultimately, we identified 91 non-redundant
occurrence points for R. flavipes, 30 for R. virginicus, and 17 for R. malletei (Table S1). ENM was
conducted with the ‘biomod2’ package [43] in R [44] using four modeling algorithms (e.g., [45–47]).
Distributions were reconstructed using mean climatological data for a period spanning 1960–1990,
with all variables used at 1-km resolution. Nineteen bioclimatic variables [35] were obtained from the
WorldClim database v.1.4 (http://www.worldclim.org), and then factor analysis was used to reduce
the number of predictors, and the associated correlation among them (see Files S1 for full details
of ENM methods). From the 19 bioclimatic variables, we generated four environmental factors (see
File S1 and Figures S2 and S3 for full details of factor analysis): dry-season precipitation, wet-season
precipitation, summer temperature, and temperature range.

2.2. Niche Occupancy, Niche Identity, and Distributional Overlap

Predicted niche occupancy profiles were generated for each environmental factor following
Evans et al. [48], implemented in the ‘phyloclim’ package [49]. Niche overlap for each environmental
factor was summarized using both Schoener’s D statistic [50], and the modified Hellinger statistic,
I, as proposed by Warren et al. [51]. We also used the D and I statistics to determine pairwise
niche equivalency/identity among the three Reticulitermes species. The niche equivalency test asks
whether the ENMs of two species are more different than expected if they had been drawn from
the same distribution. To perform the niche equivalency test, we generated a distribution using 999
pseudoreplicate datasets.

To assess distributional overlap based on ENMs, we used maps of binary presence/absence
as well as continuous occurrence probabilities. We used binary predictions, because this allowed

http://www.worldclim.org
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us to determine which species co-occurred in areas of distributional overlap. However, since the
use of continuous predictions has been recommended when estimating species richness [52], we
calculated the sum of Reticulitermes species’ occurrence probabilities (Figure S4), and calculated joint
and exclusive occurrence probabilities for each of the three species (Figure S5). For binary predictions,
the approach of maximizing sensitivity and specificity has consistently performed better than other
methods [53–55]. Thus, we used the True Skill Statistic (TSS = sensitivity + specificity − 1) [56] both
as a model performance metric and to identify a threshold for converting continuous occurrence
probabilities to binary classifications. The threshold was chosen based on maximizing the TSS, without
risking under-prediction of presences (i.e., selecting the lowest threshold at which TSS is maximized).
We used a threshold value of 0.2, where probability > 0.2 represented presence, and suitability ≤ 0.2
represented absence. We merged the three species’ binary maps by summing re-coded maps, where
absence = 0, but presence was coded depending on species: R. flavipes = 4, R. virginicus = 2, and
R. malletei = 1. This way, the sum of binary maps resulted in seven distinct categories: single-species
areas (3 categories, with aforementioned scores); areas of two-species overlap (3 categories, scores of
either 3, 5, or 6 depending on the identity of the species pair); and areas where all three species overlap
(1 category, with a score of 7).

2.3. Environmental Factors and Niche Divergence

To determine the sources of variation in the Reticulitermes occurrence dataset, we included the
effects of spatial structure and environmental factors, and performed variance partitioning using the
‘varpart’ function in ‘vegan’ [57]. To account for multiple predictors in the model, we used adjusted R2.
To determine which (if any) environmental factors have significantly contributed to niche divergence
of Reticulitermes species, we first removed the effect of spatial structure. We did this by performing
distance-based redundancy analysis [58] using the ‘capscale’ function. To account for spatial structure,
we transformed Euclidean geographic distances to a continuous rectangular vector by Principal
Coordinates analysis of Neighbor Matrices (PCNM) using the ‘pcnm’ function in ‘vegan’. Only
significant PCNM axes were used in partialling out spatial structure. Significance of the environmental
and spatial predictors was assessed using multivariate F-statistics with 9999 permutations.

3. Results

3.1. Niche Occupancy, Niche Identity, and Distributional Overlap

Predicted niche occupancy profiles for the three Reticulitermes species (Figure 1) showed
differences in peak values across all four environmental factors. The two temperature factors, summer
temperature and temperature range, showed differences in peaks between R. flavipes and R. virginicus,
whereas R. malletei was intermediate. Similarly, the two precipitation factors, dry-season precipitation
and wet-season precipitation, showed more marked differences between R. flavipes and R. virginicus
than for any of the other pairwise species comparisons. The bimodality of summer temperature
and wet-season precipitation is a result of occurrence of Reticulitermes species in two areas with
pronounced differences in wet-season precipitation (see Figure S3). Bimodality was also observed
for summer temperature in R. flavipes, given that the species occurs in both low elevations and the
cooler high-elevation areas of the Appalachians (see Figure S3). Statistics that characterize the extent
of niche overlap showed that R. flavipes and R. virginicus had the least amount of overlap (D = 0.582,
I = 0.843; Table 1). Furthermore, the niche identity test between these two species showed significant
differentiation (p < 0.001; Table 1). R. malletei was more similar to R. flavipes in terms of temperature
range (D = 0.889) and summer temperature (D = 0.872), but showed more overlap with R. virginicus for
dry- (D = 0.894) and wet-season precipitation (D = 0.848). R. virginicus showed the least overlap with
R. flavipes, across all four environmental factors (Table 2).
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Figure 1. Predicted niche occupancy. Four environmental factors were used to estimate niche occupancy
of R. flavipes (Rf), R. malletei (Rm), and R. virginicus (Rv): top two panels: temperature range and
summer temperature; bottom two panels: dry- and wet-season precipitation. The y-axis represents
niche occupancy, or suitability, and the area under the curves sums to 1, the total suitability.

Table 1. Niche identity test. The upper off-diagonal shows Schoener’s D statistic, and the lower
off-diagonals shows the modified Hellinger statistic, I. Significant niche divergence is reported in bold
text with red highlighting. The more dissimilar of the other two niche comparisons is highlighted in
pink. Abbreviations used for R. flavipes, R. malletei, and R. virginicus are Rf, Rm, and Rv, respectively.

Rf Rm Rv

Rf - D = 0.744
p = 0.280

D = 0.582
p < 0.001

Rm I = 0.935
p = 0.239 - D = 0.788

p = 0.630

Rv I = 0.843
p < 0.001

I = 0.961
p = 0.750 -

Table 2. Pairwise niche overlap among Reticulitermes species for each of four environmental factors.
The top three rows show Schoener’s D statistic, and the bottom three rows show the modified Hellinger
statistic, I. The four environmental factors are: temperature range (TR), summer temperature (ST),
dry-season precipitation (DP), and wet-season precipitation (WP). Niche overlap is highest in green and
lowest in red. R. flavipes, R. malletei, and R. virginicus are abbreviated as Rf, Rm, and Rv, respectively.

TR ST DP WP

D
Rf/Rm 0.889 0.872 0.693 0.820
Rf/Rv 0.683 0.707 0.680 0.680

Rm/Rv 0.791 0.809 0.894 0.848

I
Rf/Rm 0.991 0.990 0.919 0.982
Rf/Rv 0.917 0.928 0.926 0.942

Rm/Rv 0.952 0.961 0.990 0.984
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The predicted distribution of R. flavipes spanned a larger area in the northern portion of the
southern Appalachians than that of the other two species. R. flavipes overlapped with R. malletei, to
the exclusion of R. virginicus, in an area including Kentucky, Virginia, and West Virginia (Figure 2;
Figure S5). The overlap between R. flavipes and R. virginicus, excluding R. malletei, spanned
a smaller area, with lower probability (Figure S5). Predicted distributions of all three species
overlapped in eastern Tennessee, western North Carolina, northern Alabama and Georgia (Figure 2;
Figures S4 and S5).Insects 2018, 9, x FOR PEER REVIEW  6 of 13 
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Figure 2. Distributional overlap of R. flavipes (Rf), R. malletei (Rm), and R. virginicus (Rv). Overlap is
color coded based on the number of species. “All” is where occurrence of all three species is predicted.
Areas of two-species overlap are shown in the legend as “Rf + Rv”, “Rf + Rm”, and “Rv + Rm”. Absence
of all three species is shown in grey and referred to in the legend as “Abs.”

3.2. Environmental Factors and Niche Divergence

Distance-based redundancy analysis (Figure 3) showed that only the summer temperature
factor contributed significantly (F1, 127 = 8.673, p = 0.001) to differences in occurrence among the
three Reticulitermes species. After accounting for spatial structure by partialling out six significant
spatial components (PCNM axes 1, 4, 6, 17, 43, and 58), summer temperature remained significant
(F1, 121 = 5.622, p = 0.003). The six significant spatial components along with summer temperature
accounted for 18.5% of the observed variation in the occurrence data. Spatial structure alone explained
9.6% of the variation, environmental factors accounted for 3.3%, and the interaction between the two
explained an additional 5.6% of the variation.

Following the removal of spatial structure effects, the highest correlation coefficient between
environmental factors and ordination axes of the distance-based redundancy analysis was observed
for summer temperature (r = 0.730) and axis 1. This axis captured the divergence of R. virginicus from
the other two species (Figure 3). Thus, summer temperature contributed significantly to R. virginicus
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divergence. While not significant, temperature range (r = −0.383) and wet-quarter precipitation
(r = 0.376) were correlated with axis 2, which captured the divergence of R. malletei (Figure 3).
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WP

Rm
Rv
Rv+Rm
Rf
Rf+Rm
Rf+Rv

ST
(0.730, 0.152)

(0.153, 0.376)

(-0.169, -0.383)

(0.068, -0.033)

Figure 3. Distance-based redundancy analysis. The plot shows a constrained ordination of 132
sampling sites, color coded based on the number of species present. Sites where only R. flavipes,
R. virginicus, or R. malletei were sampled are referred to in the legend as “Rf”, “Rv”, and “Rm”,
respectively. Two-species sites are shown in the legend as “Rf + Rv”, “Rf + Rm”, and “Rv + Rm”.
The ordination is conditional on six significant spatial components (PCNM axes 1, 4, 6, 17, 43,
and 58) and constrained by four environmental factors: dry-season precipitation (DP); wet-season
precipitation (WP); summer temperature (ST); temperature range (TR). Arrows show strength of
correlation (coefficients in parentheses) of environmental factors with ordination axes 1 and 2.

4. Discussion

This study provides insights into the ecology of subterranean termites with regard to geographic
distributions and niche partitioning among three broadly co-distributed Reticulitermes species in
the southern Appalachian Mountains and surrounding areas. This region is a biogeographically
significant center of endemism, yet the ecology of its resident invertebrate fauna—particularly
saproxylic insects—is poorly known. Our ENMs suggest that an area in the mid-latitudes of the
southern Appalachians, characterized by complex topography and multiple ecoregions, provides
suitable habitat to support all three Reticulitermes species. Our study also highlights the roles that
temperature and precipitation play in driving niche divergence among Reticulitermes species. To
our knowledge, this work represents the first evidence of significant regional-scale niche divergence
between R. flavipes and R. virginicus. Below, we consider the broader context of these findings, as well
as caveats and future directions for follow-up studies that build on the information presented here.

4.1. Reticulitermes Distributions and Climatic Drivers of Niche Divergence among Species

Our analyses predicted extensive co-occurrence of all three Reticulitermes species in the
mid-latitudes of the southern Appalachians (Figure 2; Figures S4 and S5). Based on paleoclimatic [59],
biogeographic [60] and comparative phylogeographic [61] data, the southern Appalachians remained
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free from Pleistocene ice sheets and served as a major refuge for many species during glacial periods,
consequently maintaining higher levels of biodiversity. Indeed, the present-day complexity of this
mid-latitude region harbors many different niches, which could facilitate long-term coexistence of
closely related species. However, in addition to predicted co-occurrence of Reticulitermes species
in the montane regions of the southern Appalachians, our ENMs also identified areas of two- and
three-species co-occurrence along the Gulf coast of western Florida, and the Atlantic coast from North
Carolina to New Jersey and New York. To empirically confirm the co-occurrence of subterranean
termites in these coastal areas, future studies should include these regions in their sampling efforts.
In the case of another forest-dependent invertebrate, the millipede Narceus americanus, the Florida
Gulf coast has been identified as an important refuge during the Last Glacial Maximum [62]. Indeed,
the paleoclimatic history of areas to the south and east of the southern Appalachian Mountains are
increasingly being recognized as reservoirs of forest invertebrate biodiversity during past periods of
environment change. The incidence of high termite species diversity—even though only assessed here
for one genus—is therefore not unexpected.

In addition to co-occurrence of Reticulitermes species, our study provides novel insights into
climatic drivers of niche divergence. Consistent with the findings of Maynard et al. [42], we determined
that R. virginicus is more restricted to the south, whereas R. flavipes has a broad latitudinal range.
Furthermore, we determined that R. flavipes occurs farther north than the other two species, even
excluding other Reticulitermes (Figure S5), potentially because it tolerates lower amounts of precipitation
(both dry- and wet-season; Figure 1). Maynard et al.’s [42] ENMs showed that temperature variables
were the most important predictors of termite distributions. Based on our formal assessment of niche
overlap between R. flavipes and R. virginicus, we determined that both temperature and precipitation
seasonality (as represented by temperature range, summer temperature, and dry- and wet-season
precipitation) play non-negligible roles in the significant niche divergence between R. flavipes
and R. virginicus. Furthermore, using distance-based redundancy analysis, we identified summer
temperature as a major driver of this divergence, with R. flavipes occurring in areas with lower summer
temperatures. In the mid-latitudes of the southern Appalachians, where dry-season precipitation
is high (Figure S3), all three Reticulitermes species co-occur (Figure 2; Figures S4 and S5), but farther
north, where dry- and wet-season precipitation is low (Figure S3), R. flavipes is more competitive.

4.2. Potential Explanations for Lack of Empirical Evidence for Local-Scale Coexistence of
Reticulitermes Species

Interestingly, despite the significant niche divergence between R. flavipes and R. virginicus, we
collected both of these species from the same rotting log at one sampling site (i.e., #37 located near
the Georgia/Southern Carolina state border; Table S1). To our knowledge, this is the first record
of true syntopy between Reticulitermes species. The apparent rarity of syntopy and general lack of
coexistence of Reticulitermes species at local scales could be explained by competitive exclusion. Colony
size and soldier number are important features for termite competitive ability. Termite species with
small colonies have been observed to relinquish resources and be eliminated by dominant interspecific
competitors with large colonies [63]. Through avoidance of dominant competitors, interspecific
competition may result in spatial separation [64], but also temporal separation (i.e., phenological
differences). Termites may be able to avoid other related species using vibrational cues. Indeed,
vibrational cues are important for termite sensory perception and communication, as these signals
can travel over long distances [65,66]. For instance, the drywood termite Cryptotermes secundus
can distinguish conspecifics from the dominant competitor in the environment, the subterranean
termite Coptotermes acinaciformis [65]. Furthermore, Coptotermes acinaciformis detects its major predator,
the ant Iridomyrmex purpureus, using vibrational cues only [66]. Overall, given these highly tuned
sensory capabilities, it stands to reason that competitive exclusion, or competitor avoidance, could
be important factors in preventing local co-occurrence among Reticulitermes species. Alternatively,
the dominant competitor may ultimately outcompete the other species. For instance, R. flavipes



Insects 2019, 10, 33 9 of 13

has a broad distribution and occurs farther north than the other two species, possibly due to a
competitive advantage stemming from the fact that it tolerates conditions of lower dry- and wet-season
precipitation. Furthermore, interspecific aggression coupled with low levels of intraspecific agonism
(even colony fusion) [67,68], may make R. flavipes the dominant competitor.

4.3. Caveats and Future Directions

While our sampling suggests that true syntopy and local co-occurrence of different species at the
same site is very rare, our detection of only one species in all but one rotting log, and at the majority
of sampling sites (i.e., 126 out of 132), may actually be a consequence of the sampling strategy that
was employed (see Section 2.1). Briefly, we simply aimed to collect termites from each site, rather
than provide a complete assessment of termite diversity at each site. Indeed, variance partitioning
reflects this, showing that most (81.5%) of the variance in the occurrence data did not stem from
spatial structure (9.6%), or environmental differences (3.3%), or interaction between the two (5.6%).
Accordingly, while competitive exclusion is a plausible explanation for apparent rare local-scale
co-occurrence (i.e., micro-allopatry) among Reticulitermes species, a dedicated sampling approach
would be required to formally test this idea. For example, exhaustively sampling multiple logs per
site, at a series of sites arranged along a transect traversing a region where two or more species occur
in close proximity would be a productive approach. Fortunately, the present study identified specific
geographic areas where future assessments of the frequency of true syntopy vs. micro-allopatry, and
associated interspecific competitive interactions, should be focused (Table S1; Figure S1).

Although we have shown separation in niche space between species, particularly R. flavipes
and R. virginicus, these inferences were underpinned by regional-scale environmental variables,
and so they do not take into account local-scale drivers of niche divergence such as differences
in microhabitat preference, phenology, or diet. Indeed, Maynard et al. [42] highlighted that biotic and
soil characteristics play a role in termite distribution and abundance. Thus, our assessment of niche
divergence is necessarily incomplete. While it does provide important baseline information, follow-up
studies of local-scale drivers of species’ distributions could examine aspects of the microhabitat (e.g.,
humidity and temperature of soil and rotting logs), timing of nuptial flights along latitudinal and
altitudinal clines, and/or use stable isotopes to determine decomposition stage of ingested wood and
the importance of microbial biomass in termite diets at a given location [69].

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/10/1/33/s1,
File S1: Environmental variables and Ecological Niche Modeling methods; Table S1: Sampling sites with number
of species occurrences at each site and number of logs per site; Figure S1: Map of Reticulitermes sampling depicting
occurrences of one or more species at each site; Figure S2: Factor analysis; Figure S3: Environmental factors and
bioclimatic variables; Figure S4: Distributional overlap of Reticulitermes species; Figure S5: Probability of joint and
exclusive occurrence of Reticulitermes species.
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