21 research outputs found

    Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar binding specificity and its effect on host immunity

    No full text
    Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed β-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts

    Heptabladed beta propeller lectins PLL2 and PHL from Photorhabdus spp. recognize O methylated sugars and influence the host immune system

    No full text
    O‐methylation is an unusual sugar modification with a function that is not fully understood. Given its occurrence and recognition by lectins involved in the immune response, methylated sugars were proposed to represent a conserved pathogen‐associated molecular pattern. We describe the interaction of O‐methylated saccharides with two β‐propeller lectins, the newly described PLL2 from the entomopathogenic bacterium Photorhabdus laumondii, and its homologue PHL from the related human pathogen Photorhabdus asymbiotica. The crystal structures of PLL2 and PHL revealed up to 10 out of 14 potential binding sites per protein subunit to be occupied with O‐methylated structures. The avidity effect strengthens the interaction by 4 orders of magnitude. PLL2 and PHL also interfere with the early immune response by modulating the production of reactive oxygen species and phenoloxidase activity. Since bacteria from Photorhabdus spp. have a complex life cycle involving pathogenicity towards different hosts, the involvement of PLL2 and PHL might contribute to the pathogen overcoming insect and human immune system defences in the early stages of infection
    corecore