611 research outputs found

    Importance of remission and residual somatic symptoms in health-related quality of life among outpatients with major depressive disorder: a cross-sectional study

    Get PDF
    Background: Major depressive disorder (MDD) is strongly associated with an impaired quality of life (QoL), which is itself affected by various factors. Symptom-oriented ratings poorly reflect the impact of disease on the QoL and level of functioning of the mental health of subjects. The purpose of this study was to assess health-related QoL (HRQoL) using preference-based measures in outpatients with MDD with regard to their remission achievement and clinical factors affecting the HRQoL. Methods: This was a cross-sectional observational study. We recruited 811 patients with MDD from 14 psychiatric outpatient clinics in Korea. They were divided into three groups as follows: a new visit group (n = 287), a remitted group (n = 235), and a non-remitted group (n = 289). The 17-item Hamilton Depression Rating Scale was used to assign patients to the remitted or non-remitted group. The general HRQoL was assessed with the EuroQol 5D (EQ-5D), using both the EQ-5D index score and the EuroQol Visual Analog Scale (EQ-VAS). The disease-specific HRQoL was assessed with the Quality of Life Enjoyment and Satisfaction Questionnaire Short Form (Q-LES-Q-SF). Results: The non-remitted group showed a significant impairment of HRQoL in view of the subscales of EQ-5D index scores, EQ-VAS, and Q-LES-Q-SF. The EQ-5D index score in the remitted group was 0.77 ± 0.10, while it was 0.57 ± 0.23 in the non-remitted group and 0.58 ± 0.24 in the new visit group (p < 0.0001). The EQ-VAS scores for the remitted and non-remitted groups were 72.5 ± 16.6 and 50.9 ± 20.3, respectively (p < 0.0001). Likewise, patients with remission had the Q-LES-Q-SF total score of 46.5 ± 8.8, whereas those with non-remission reported 36.7 ± 7.7 (p < 0.0001). The symptom severity measured by the Depression and Somatic Symptoms Scale was significantly correlated with the HRQoL. Furthermore, patients with severe somatic symptoms showed a significantly lower EQ-5D index score (0.54 ± 0.24) than those with mild/moderate somatic symptoms (0.75 ± 0.12; p = 0.002). Conclusion: Non-remitted MDD patients, especially those with more severe somatic symptoms, show a distinct impairment of HRQoL and more clinical symptoms, suggesting the importance of achieving remission in the treatment of MDD

    Carbon Monoxide Protects against Hepatic Ischemia/Reperfusion Injury via ROS-Dependent Akt Signaling and Inhibition of Glycogen Synthase Kinase 3β

    Get PDF
    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury

    Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration.

    Get PDF
    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration
    • …
    corecore