8 research outputs found

    Characterization of Vesicles Secreted from Insulinoma NIT-1 Cells

    No full text

    An Improved Prediction Model for Ovarian Cancer Using Urinary Biomarkers and a Novel Validation Strategy

    No full text
    This study was designed to analyze urinary proteins associated with ovarian cancer (OC) and investigate the potential urinary biomarker panel to predict malignancy in women with pelvic masses. We analyzed 23 biomarkers in urine samples obtained from 295 patients with pelvic masses scheduled for surgery. The concentration of urinary biomarkers was quantitatively assessed by the xMAP bead-based multiplexed immunoassay. To identify the performance of each biomarker in predicting cancer over benign tumors, we used a repeated leave-group-out cross-validation strategy. The prediction models using multimarkers were evaluated to develop a urinary ovarian cancer panel. After the exclusion of 12 borderline tumors, the urinary concentration of 17 biomarkers exhibited significant differences between 158 OCs and 125 benign tumors. Human epididymis protein 4 (HE4), vascular cell adhesion molecule (VCAM), and transthyretin (TTR) were the top three biomarkers representing a higher concentration in OC. HE4 demonstrated the highest performance in all samples withOC(mean area under the receiver operating characteristic curve (AUC) 0.822, 95% CI: 0.772–0.869), whereas TTR showed the highest efficacy in early-stage OC (AUC 0.789, 95% CI: 0.714–0.856). Overall, HE4 was the most informative biomarker, followed by creatinine, carcinoembryonic antigen (CEA), neural cell adhesion molecule (NCAM), and TTR using the least absolute shrinkage and selection operator (LASSO) regression models. A multimarker panel consisting of HE4, creatinine, CEA, and TTR presented the best performance with 93.7% sensitivity (SN) at 70.6% specificity (SP) to predict OC over the benign tumor. This panel performed well regardless of disease status and demonstrated an improved performance by including menopausal status. In conclusion, the urinary biomarker panel with HE4, creatinine, CEA, and TTR provided promising efficacy in predicting OC over benign tumors in women with pelvic masses. It was also a non-invasive and easily available diagnostic tool

    Identification of cell-biologic mechanisms of coronary artery spasm and its ex vivo diagnosis using peripheral blood-derived iPSCs

    Get PDF
    Abstract Background Although vasospastic angina (VSA) is known to be caused by coronary artery spasm, no study has fully elucidated the exact underlying mechanism. Moreover, in order to confirm VSA, patients should undergo invasive coronary angiography with spasm provocation test. Herein, we investigated the pathophysiology of VSA using peripheral blood-derived induced pluripotent stem cells (iPSCs) and developed an ex vivo diagnostic method for VSA. Methods and results With 10 mL of peripheral blood from patients with VSA, we generated iPSCs and differentiated these iPSCs into target cells. As compared with vascular smooth muscle cells (VSMCs) differentiated from iPSCs of normal subjects with negative provocation test, VSA patient-specific iPSCs-derived VSMCs showed very strong contraction in response to stimulants. Moreover, VSA patient-specific VSMCs exhibited a significant increase in stimulation-induced intracellular calcium efflux (Changes in the relative fluorescence unit [ΔF/F]; Control group vs. VSA group, 2.89 ± 0.34 vs. 10.32 ± 0.51, p < 0.01), and exclusively induced a secondary or tertiary peak of calcium efflux, suggesting that those findings could be diagnostic cut-off values for VSA. The observed hyperreactivity of VSA patient-specific VSMCs were caused by the upregulation of sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) due to its enhanced small ubiquitin-related modifier (SUMO)ylation. This increased activity of SERCA2a was reversed by treatment with ginkgolic acid, an inhibitor of SUMOylated E1 molecules (pi/µg protein; VSA group vs. VSA + ginkgolic acid, 52.36 ± 0.71 vs. 31.93 ± 1.13, p < 0.01). Conclusions Our findings showed that abnormal calcium handling in sarco/endoplasmic reticulum could be induced by the enhanced SERCA2a activity in patients with VSA, leading to spasm. Such novel mechanisms of coronary artery spasm could be useful for drug development and diagnosis of VSA
    corecore