13 research outputs found

    Biotransformation in water and soil of nitrosamines and nitramines potentially generated from amine-based CO2 capture technology

    Get PDF
    Nitrosamines (NSAs) and nitramines (NAs) are identified as possible degradation products from amine-based post-combustion CO2-capture (PCCC). Selected NSAs and NAs were subjected to aerobic and anaerobic biodegradation studies. In a screening study with 20 μg/L NSAs and NAs at 20 °C, only NSAs and NAs containing hydroxyl groups (alkanol compounds) exhibited aerobic biotransformation >10% after incubation in 28 days. Extending the biodegradation period to 56 days resulted in ≥80% biotransformation of the examined alkanol NSAs and NAs at 20 °C. Biotransformation (20 °C; 56 days) of the NSA NDELA at different concentrations (1–100 μg/L) did not differ significantly, but both water sources and temperatures affected biotransformation of the tested compounds. Anaerobic biotransformation (20 °C; 56 days) occurred rapidly  with alkanol NSAs and NAs, but not with alkyl compounds. Interestingly, 1st order rate coefficients and half-lives indicated comparable or even faster anaerobic than aerobic biotransformation at the same temperature. Predictions of biotransformation pathways suggested that the -OH substituent of alkanol NSAs and NAs was more susceptible to degradation than nitroso- and nitro-substituents.Biotransformation in water and soil of nitrosamines and nitramines potentially generated from amine-based CO2 capture technologyacceptedVersio

    Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery

    Get PDF
    Lipid-based nanoparticles for RNA delivery (LNP-RNA) are revolutionizing the nanomedicine field, with one approved gene therapy formulation and two approved vaccines against COVID-19, as well as multiple ongoing clinical trials. As for other innovative nanopharmaceuticals (NPhs), the advancement of robust methods to assess their quality and safety profiles—in line with regulatory needs—is critical for facilitating their development and clinical translation. Asymmetric-flow field-flow fractionation coupled to multiple online optical detectors (MD-AF4) is considered a very versatile and robust approach for the physical characterisation of nanocarriers, and has been used successfully for measuring particle size, polydispersity and physical stability of lipid-based systems, including liposomes and solid lipid nanoparticles. However, the unique core structure of LNP-RNA, composed of ionizable lipids electrostatically complexed with RNA, and the relatively labile lipid-monolayer coating, is more prone to destabilization during focusing in MD-AF4 than previously characterised nanoparticles, resulting in particle aggregation and sample loss. Hence characterisation of LNP-RNA by MD-AF4 needs significant adaptation of the methods developed for liposomes. To improve the performance of MD-AF4 applied to LNP-RNA in a systematic and comprehensive manner, we have explored the use of the frit-inlet channel where, differently from the standard AF4 channel, the particles are relaxed hydrodynamically as they are injected. The absence of a focusing step minimizes contact between the particle and the membrane, reducing artefacts (e.g. sample loss, particle aggregation). Separation in a frit-inlet channel enables satisfactory reproducibility and acceptable sample recovery in the commercially available MD-AF4 instruments. In addition to slice-by-slice measurements of particle size, MD-AF4 also allows to determine particle concentration and the particle size distribution, demonstrating enhanced versatility beyond standard sizing measurements.publishedVersio

    Identification of novel cyanoacrylate monomers for use in nanoparticle drug delivery systems prepared by miniemulsion polymerisation – A multistep screening approach

    Get PDF
    Poly (alkyl cyanoacrylate) (PACA) polymeric nanoparticles (NPs) are promising drug carriers in drug delivery. However, the selection of commercially available alkyl cyanoacrylate (ACA) monomers is limited, because most monomers were designed for use in medical and industrial glues and later repurposed for drug encapsulation. This study therefore aimed to seek out novel ACA materials for use in NP systems using a toxicity led screening approach. A multistep strategy, including cytotoxicity screening of alcohols as degradation products of PACA (44 alcohols), NPs (14 polymers), and a final in vivo study (2 polymers) gave poly (2-ethylhexyl cyanoacrylate) PEHCA as a promising novel PACA candidate. For the first time, this work presents cytotoxicity data on several novel ACAs, PEHCA in vivo toxicity data, and miniemulsion polymerisation-based encapsulation of the cabazitaxel and NR688 in novel PACA candidates. Furthermore, several of the ACA candidates were compatible with a wider selection of lipophilic active pharmaceutical ingredients (APIs) versus commercially available controls. Combined, this work demonstrates the potential benefits of expanding the array of available ACA materials in drug delivery. Novel ACAs have the potential to encapsulate a wider range of APIs in miniemulsion polymerisation processes and may also broaden PACA applicability in other fields.publishedVersio

    In vivo Antitumor and ametastatic efficacy of a polyacetal-based paclitaxel conjugate for prostate cancer therapy

    Get PDF
    Prostate cancer (PCa), one of the leading causes of cancer-related deaths, currently lacks effective treatment for advanced-stage disease. Paclitaxel (PTX) is a highly active chemotherapeutic drug and the first-line treatment for PCa; however, conventional PTX formulation causes severe hypersensitivity reactions and limits PTX use at high concentrations. In the pursuit of high molecular weight, biodegradable, and pH-responsive polymeric carriers, we conjugated PTX to a polyacetal-based nanocarrier to yield a tert-Ser-PTX polyacetal conjugate. tert-Ser-PTX conjugate provides sustained release of PTX over two weeks in a pH-responsive manner while also obtaining a degree of epimerization of PTX to 7-epi-PTX. Serum proteins stabilize tert-Ser-PTX, with enhanced stability in human serum vs. PBS (pH 7.4). In vitro efficacy assessments in PCa cells demonstrated IC50 values above those for the free form of PTX due to the differential cell trafficking modes; however, in vivo tolerability assays demonstrated that tert-Ser-PTX significantly reduced the systemic toxicities associated with free PTX treatment. tert-Ser-PTX also effectively inhibited primary tumor growth and hematologic, lymphatic, and coelomic dissemination, as confirmed by in vivo and ex vivo bioluminescence imaging and histopathological evaluations in mice carrying orthotopic LNCaP tumors. Overall, our results suggest the application of tert-Ser-PTX as a robust anti-tumor/antimetastatic treatment for PCa

    Corrosion and degradation in MEA based post-combustion CO2 capture

    No full text
    Two of the main challenges in post-combustion CO2 capture with ethanolamine are solvent degradation and material corrosion. It has been shown that there is a correlation between degradation and corrosion. The present paper examines this correlation by studying the effect of 10 MEA degradation products on corrosion. Thermal degradation experiments were conducted under stripper conditions for 5 weeks. 30 wt% MEA solution with 1 wt% of the various degradation products was placed in 316 SS cylinders and stored in a thermostat chamber at 135 °C. ICP-MS was used for the metal concentration analyses for all the solutions, while ion chromatography was used for the quantitative determination of heat stable salts anions and MEA concentrations. The solutions were also analysed for degradation products in order to study the formation and thermal stability of these compounds. For corrosion monitoring, in addition to ICP-MS analyses, SEM–EDS was used for examining the cylinders’ surface morphology and elemental composition while XRD was used for corrosion product identification. In the present paper, the influence of the secondary degradation products on corrosion is studied. Results show that some specific degradation products, such as Bicine, HeGly and HEEDA, enhance corrosion while others do not seem to have a significant effect on corrosion of stainless steel

    Ultrasound-Mediated Delivery of Chemotherapy into the Transgenic Adenocarcinoma of the Mouse Prostate Model

    Get PDF
    Ultrasound (US) in combination with microbubbles (MB) has had promising results in improving delivery of chemotherapeutic agents. However, most studies are done in immunodeficient mice with xenografted tumors. We used two phenotypes of the spontaneous transgenic adenocarcinoma of the mouse prostate (TRAMP) model to evaluate if US + MB could enhance the therapeutic efficacy of cabazitaxel (Cab). Cab was either injected intravenously as free drug or encapsulated into nanoparticles. In both cases, Cab transiently reduced tumor and prostate volume in the TRAMP model. No additional therapeutic efficacy was observed combining Cab with US + MB, except for one tumor. Additionally, histology grading and immunostaining of Ki67 did not reveal differences between treatment groups. Mass spectrometry revealed that nanoparticle encapsulation of Cab increased the circulation time and enhanced the accumulation in liver and spleen compared with free Cab. The therapeutic results in this spontaneous, clinically relevant tumor model differ from the improved therapeutic response observed in xenografts combining US + MB and chemotherapy.publishedVersio

    Intraperitoneal administration of cabazitaxel-loaded nanoparticles in peritoneal metastasis models

    No full text
    Colorectal and ovarian cancers frequently develop peritoneal metastases with few treatment options. Intraperitoneal chemotherapy has shown promising therapeutic effects, but is limited by rapid drug clearance and systemic toxicity. We therefore encapsulated the cabazitaxel taxane in poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs), designed to improve intraperitoneal delivery. Toxicity of free and encapsulated cabazitaxel was investigated in rats by monitoring clinical signs, organ weight and blood hematological and biochemical parameters. Pharmacokinetics, biodistribution and treatment response were evaluated in mice. Biodistribution was investigated by measuring both cabazitaxel and the 2-ethylbutanol NP degradation product. Drug encapsulation was shown to increase intraperitoneal drug retention, leading to prolonged intraperitoneal drug residence time and higher drug concentrations in peritoneal tumors. As a result, encapsulation of cabazitaxel improved the treatment response in two in vivo models bearing intraperitoneal tumors. Together, these observations indicate a strong therapeutic potential of NP-based cabazitaxel encapsulation as a novel treatment for peritoneal metastases.publishedVersio

    Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery

    No full text
    Lipid-based nanoparticles for RNA delivery (LNP-RNA) are revolutionizing the nanomedicine field, with one approved gene therapy formulation and two approved vaccines against COVID-19, as well as multiple ongoing clinical trials. As for other innovative nanopharmaceuticals (NPhs), the advancement of robust methods to assess their quality and safety profiles—in line with regulatory needs—is critical for facilitating their development and clinical translation. Asymmetric-flow field-flow fractionation coupled to multiple online optical detectors (MD-AF4) is considered a very versatile and robust approach for the physical characterisation of nanocarriers, and has been used successfully for measuring particle size, polydispersity and physical stability of lipid-based systems, including liposomes and solid lipid nanoparticles. However, the unique core structure of LNP-RNA, composed of ionizable lipids electrostatically complexed with RNA, and the relatively labile lipid-monolayer coating, is more prone to destabilization during focusing in MD-AF4 than previously characterised nanoparticles, resulting in particle aggregation and sample loss. Hence characterisation of LNP-RNA by MD-AF4 needs significant adaptation of the methods developed for liposomes. To improve the performance of MD-AF4 applied to LNP-RNA in a systematic and comprehensive manner, we have explored the use of the frit-inlet channel where, differently from the standard AF4 channel, the particles are relaxed hydrodynamically as they are injected. The absence of a focusing step minimizes contact between the particle and the membrane, reducing artefacts (e.g. sample loss, particle aggregation). Separation in a frit-inlet channel enables satisfactory reproducibility and acceptable sample recovery in the commercially available MD-AF4 instruments. In addition to slice-by-slice measurements of particle size, MD-AF4 also allows to determine particle concentration and the particle size distribution, demonstrating enhanced versatility beyond standard sizing measurements

    Ultrasound-Mediated Delivery of Chemotherapy into the Transgenic Adenocarcinoma of the Mouse Prostate Model

    No full text
    Ultrasound (US) in combination with microbubbles (MB) has had promising results in improving delivery of chemotherapeutic agents. However, most studies are done in immunodeficient mice with xenografted tumors. We used two phenotypes of the spontaneous transgenic adenocarcinoma of the mouse prostate (TRAMP) model to evaluate if US + MB could enhance the therapeutic efficacy of cabazitaxel (Cab). Cab was either injected intravenously as free drug or encapsulated into nanoparticles. In both cases, Cab transiently reduced tumor and prostate volume in the TRAMP model. No additional therapeutic efficacy was observed combining Cab with US + MB, except for one tumor. Additionally, histology grading and immunostaining of Ki67 did not reveal differences between treatment groups. Mass spectrometry revealed that nanoparticle encapsulation of Cab increased the circulation time and enhanced the accumulation in liver and spleen compared with free Cab. The therapeutic results in this spontaneous, clinically relevant tumor model differ from the improved therapeutic response observed in xenografts combining US + MB and chemotherapy

    Ultrasound-Mediated Delivery of Chemotherapy into the Transgenic Adenocarcinoma of the Mouse Prostate Model

    No full text
    Ultrasound (US) in combination with microbubbles (MB) has had promising results in improving delivery of chemotherapeutic agents. However, most studies are done in immunodeficient mice with xenografted tumors. We used two phenotypes of the spontaneous transgenic adenocarcinoma of the mouse prostate (TRAMP) model to evaluate if US + MB could enhance the therapeutic efficacy of cabazitaxel (Cab). Cab was either injected intravenously as free drug or encapsulated into nanoparticles. In both cases, Cab transiently reduced tumor and prostate volume in the TRAMP model. No additional therapeutic efficacy was observed combining Cab with US + MB, except for one tumor. Additionally, histology grading and immunostaining of Ki67 did not reveal differences between treatment groups. Mass spectrometry revealed that nanoparticle encapsulation of Cab increased the circulation time and enhanced the accumulation in liver and spleen compared with free Cab. The therapeutic results in this spontaneous, clinically relevant tumor model differ from the improved therapeutic response observed in xenografts combining US + MB and chemotherapy
    corecore