25 research outputs found

    Asymmetric hysteresis of N\'eel caps in flux-closure magnetic dots

    Get PDF
    We investigated with XMCD-PEEM magnetic imaging the magnetization reversal processes of N\'eel caps inside Bloch walls in self-assembled, micron-sized Fe(110) dots with flux-closure magnetic state. In most cases the magnetic-dependent processes are symmetric in field, as expected. However, some dots show pronounced asymmetric behaviors. Micromagnetic simulations suggest that the geometrical features (and their asymmetry) of the dots strongly affect the switching mechanism of the N\'eel caps.Comment: Proceeding for MMM-Intermag 2010 (Washington

    Full-Field Subwavelength Imaging Using a Scattering Superlens

    Get PDF
    Light-matter interaction gives optical microscopes tremendous versatility compared with other imaging methods such as electron microscopes, scanning probe microscopes, or x-ray scattering where there are various limitations on sample preparation and where the methods are inapplicable to bioimaging with live cells. However, this comes at the expense of a limited resolution due to the diffraction limit. Here, we demonstrate a novel method utilizing elastic scattering from disordered nanoparticles to achieve subdiffraction limited imaging. The measured far-field speckle fields can be used to reconstruct the subwavelength details of the target by time reversal, which allows full-field dynamic super-resolution imaging. The fabrication of the scattering superlens is extremely simple and the method has no restrictions on the wavelength of light that is usedclos

    Measuring large optical reflection matrices of turbid media

    No full text
    We report the measurement of a large optical reflection matrix (RM) of a highly disordered medium. Incident optical fields onto a turbid sample are controlled by a spatial light modulator, and the corresponding fields reflected from the sample are measured using full-field Michelson interferometry. The number of modes in the measured RM is set to exceed the number of resolvable modes in the scattering media. We successfully study the subtle intrinsic correlations in the RM which agrees with the theoretical prediction by the random-matrix theory when the effect of the limited numerical aperture on the eigenvalue distribution of the RM is taken into account. The possibility of the enhanced delivery of incident energy into scattering media is also examined from the eigenvalue distribution which promises efficient light therapeutic applications.clos

    LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy

    No full text
    We present measurements of the full Jones matrix of individual pixels in a liquid-crystal display (LCD) panel. Employing a polarization-sensitive digital holographic microscopy based on Mach-Zehnder interferometry, the complex amplitudes of the light passing through individual LCD pixels are precisely measured with respect to orthogonal bases of polarization states, from which the full Jones matrix components of individual pixels are obtained. We also measure the changes in the Jones matrix of individual LCD pixels with respect to an applied bias. In addition, the complex optical responses of a LCD panel with respect to arbitrary polarization states of incident light were characterized from the measured Jones matrix. (C)2014 Optical Society of Americclos

    HSP70-Homolog DnaK of Pseudomonas aeruginosa Increases the Production of IL-27 through Expression of EBI3 via TLR4-Dependent NF-κB and TLR4-Independent Akt Signaling

    No full text
    IL-27, a heterodimeric cytokine composed of the p28 subunit and Epstein–Barr virus-induced gene 3 (EBI3), acts as a potent immunosuppressant and thus limits pathogenic inflammatory responses. IL-27 is upregulated upon Pseudomonas aeruginosa infection in septic mice, increasing susceptibility to the infection and decreasing clearance of the pathogen. However, it remains unclear which P. aeruginosa-derived molecules promote production of IL-27. In this study, we explored the mechanism by which P. aeruginosa DnaK, a heat shock protein 70-like protein, induces EBI3 expression, thereby promoting production of IL-27. Upregulation of EBI3 expression did not lead to an increase in IL-35, which consists of the p35 subunit and EBI3. The IL-27 production in response to DnaK was biologically active, as reflected by stimulation of IL-10 production. DnaK-mediated expression of EBI3 was driven by two distinct signaling pathways, NF-κB and Akt. However, NF-κB is linked to TLR4-associated signaling pathways, whereas Akt is not. Taken together, our results reveal that P. aeruginosa DnaK potently upregulates EBI3 expression, which in turn drives production of the prominent anti-inflammatory cytokine IL-27, as a consequence of TLR4-dependent activation of NF-κB and TLR4-independent activation of the Akt signaling pathway

    Focusing through turbid media by polarization modulation

    No full text
    We demonstrate that polarization modulation of an illumination beam can effectively control the spatial profile of the light transmitted through turbid media. Since the transmitted electric fields are completely mingled in turbid media, polarization states of an illumination beam can be used effectively to control the propagation of light through turbid media. Numerical simulations were performed which agree with experimental results obtained using a commercial in-plane switching liquid crystal display for modulating the input polarization statesclos
    corecore