33 research outputs found

    PDGF Upregulates Mcl-1 Through Activation of Ξ²-Catenin and HIF-1Ξ±-Dependent Signaling in Human Prostate Cancer Cells

    Get PDF
    BACKGROUND: Aberrant platelet derived growth factor (PDGF) signaling has been associated with prostate cancer (PCa) progression. However, its role in the regulation of PCa cell growth and survival has not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS: Using experimental models that closely mimic clinical pathophysiology of PCa progression, we demonstrated that PDGF is a survival factor in PCa cells through upregulation of myeloid cell leukemia-1 (Mcl-1). PDGF treatment induced rapid nuclear translocation of Ξ²-catenin, presumably mediated by c-Abl and p68 signaling. Intriguingly, PDGF promoted formation of a nuclear transcriptional complex consisting of Ξ²-catenin and hypoxia-inducible factor (HIF)-1Ξ±, and its binding to Mcl-1 promoter. Deletion of a putative hypoxia response element (HRE) within the Mcl-1 promoter attenuated PDGF effects on Mcl-1 expression. Blockade of PDGF receptor (PDGFR) signaling with a pharmacological inhibitor AG-17 abrogated PDGF induction of Mcl-1, and induced apoptosis in metastatic PCa cells. CONCLUSIONS/SIGNIFICANCE: Our study elucidated a crucial survival mechanism in PCa cells, indicating that interruption of the PDGF-Mcl-1 survival signal may provide a novel strategy for treating PCa metastasis

    PTEN Regulates PDGF Ligand Switch for Ξ²-PDGFR Signaling in Prostate Cancer

    Get PDF
    Platelet-derived growth factor (PDGF) family members are potent growth factors that regulate cell proliferation, migration, and transformation. Clinical studies have shown that both PDGF receptor Ξ² (Ξ²-PDGFR) and its ligand PDGF D are up-regulated in primary prostate cancers and bone metastases, whereas PDGF B, a classic ligand for Ξ²-PDGFR, is not frequently detected in clinical samples. In this study, we examined the role of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in the regulation of PDGF expression levels using both a prostate-specific, conditional PTEN-knockout mouse model and mouse prostate epithelial cell lines established from these mice. We found an increase in PDGF D and Ξ²-PDGFR expression levels in PTEN-null tumor cells, accompanied by a decrease in PDGF B expression. Among Akt isoforms, increased Akt3 expression was most prominent in mouse PTEN-null cells, and phosphatidylinositol 3-kinase/Akt activity was essential for the maintenance of increased PDGF D and Ξ²-PDGFR expression. In vitro deletion of PTEN resulted in a PDGF ligand switch from PDGF B to PDGF D in normal mouse prostate epithelial cells, further demonstrating that PTEN regulates this ligand switch. Similar associations between PTEN status and PDGF isoforms were noted in human prostate cancer cell lines. Taken together, these results suggest a mechanism by which loss of PTEN may promote prostate cancer progression via PDGF D/Ξ²-PDGFR signal transduction

    TIMP-1 Induces an EMT-Like Phenotypic Conversion in MDCK Cells Independent of Its MMP-Inhibitory Domain

    Get PDF
    Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) regulate epithelial-mesenchymal transition (EMT) critical for the development of epithelial organs as well as cancer cell invasion. TIMP-1 is frequently overexpressed in several types of human cancers and serves as a prognostic marker. The present study investigates the roles of TIMP-1 on the EMT process and formation of the lumen-like structure in a 3D Matrigel culture of MDCK cells. We show that TIMP-1 overexpression effectively prevents cell polarization and acinar-like structure formation. TIMP-1 induces expression of the developmental EMT transcription factors such as SLUG, TWIST, ZEB1 and ZEB2, leading to downregulation of epithelial marker and upregulation of mesenchymal markers. Importantly, TIMP-1β€²s ability to induce the EMT-like process is independent of its MMP-inhibitory domain. To our surprise, TIMP-1 induces migratory and invasive properties in MDCK cells. Here, we present a novel finding that TIMP-1 signaling upregulates MT1-MMP and MMP-2 expression, and potentiates MT1-MMP activation of pro-MMP-2, contributing to tumor cell invasion. In spite of the fact that TIMP-1, as opposed to TIMP-2, does not interact with and inhibit MT1-MMP, TIMP-1 may act as a key regulator of MT1-MMP/MMP-2 axis. Collectively, our findings suggest a model in which TIMP-1 functions as a signaling molecule and also as an endogenous inhibitor of MMPs. This concept represents a paradigm shift in the current view of TIMP-1/MT1-MMP interactions and functions during cancer development/progression

    Platelet-Derived Growth Factor D Is Activated by Urokinase Plasminogen Activator in Prostate Carcinoma Cells

    No full text
    Platelet-derived growth factor (PDGF) protein family members are potent mitogens and chemoattractants for mesenchymal cells. The classic PDGF ligands A and B are single-domain protein chains which are secreted as active dimers capable of activating their cognate PDGF receptors (PDGFRs). In contrast to PDGFs A and B, PDGF D contains an N-terminal complement subcomponent C1r/C1s, Uegf, and Bmp1 (CUB) domain and a C-terminal PDGF domain. PDGF D must undergo extracellular proteolytic processing, separating the CUB domain from the PDGF domain, before the PDGF domain can stimulate Ξ²-PDGFR-mediated cell signal transduction. Here, we report that prostate carcinoma cells LNCaP and PC3 autoactivate latent full-length PDGF D into its active form under serum-independent conditions and that this autoactivation is inhibited by PAI-1, a urokinase plasminogen activator (uPA)/tissue plasminogen activator (tPA) inhibitor. Interestingly, uPA, but not the closely related protease tPA, is capable of processing recombinant latent PDGF DD into the active form. We identify the uPA cleavage site between the CUB and PDGF domains of the full-length PDGF D by mutational analysis and show that PDGF D and uPA colocalize in human prostate carcinoma. This evidence provides a direct link between uPA- and PDGF D-mediated cell signaling, which may contribute to the progression of prostate cancer

    Roles of JNK-1 and p38 in selective induction of apoptosis by capsaicin in ras-transformed human breast epithelial cells

    No full text
    Efforts have been made to develop a chemoprevention strategy that selectively triggers apoptosis in malignant cancer cells. Previous studies showed that capsaicin, the major pungent ingredient of red pepper, had differential effect between normal and transformed cells. As an approach to unveil the molecular mechanism by which capsaicin selectively induces apoptosis in transformed cells, we investigated the effect of capsaicin in nontransformed and ras-transformed cells of a common origin: parental (MCF10A) and H-ras-transformed (H-ras MCF10A) human breast epithelial cells. Here, we show that capsaicin selectively induces apoptosis in H-ras-transformed cells but not in their normal cell counterparts. The capsaicin-induced apoptosis, which is dependent on ras transformation, involves the activity of DEV-Dase (caspase-3 like). In H-ras MCF10A cells, capsaicin treatment markedly activated c-Jun N-terminal protein kinase (JNK)-I and p38 matigen-activated protein kinase (MAPK) while it deactivated extracellular signal-regulated protein kinases (ERKs). The use of kinase inhibitors and overexpression of dominant-negative forms of MAPKs demonstrated a role of JNK-I and p38, but not that of ERKs, in apoptosis induced by capsaicin in H-ras-transformed MCF10A cells. Based on the present study, we propose that capsaicin selectively induces apoptosis through modulation of ras-downstream Signaling molecules in ras-activated MCF10A cells. Taken in conjunction with the fact that uncontrolled ras activation is probably the most common genetic defect in human cancer cells, our finding may be critical to the chemopreventive potential of capsaicin and for developing a strategy to induce tumor cell-specific apoptosis. (C) 2002 Wiley-Liss. Inc
    corecore