93 research outputs found

    1,25-Dihydroxyvitamin D3 Inhibits the Differentiation and Migration of TH17 Cells to Protect against Experimental Autoimmune Encephalomyelitis

    Get PDF
    BACKGROUND: Vitamin D(3), the most physiologically relevant form of vitamin D, is an essential organic compound that has been shown to have a crucial effect on the immune responses. Vitamin D(3) ameliorates the onset of the experimental autoimmune encephalomyelitis (EAE); however, the direct effect of vitamin D(3) on T cells is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In an in vitro system using cells from mice, the active form of vitamin D(3) (1,25-dihydroxyvitamin D(3)) suppresses both interleukin (IL)-17-producing T cells (T(H)17) and regulatory T cells (Treg) differentiation via a vitamin D receptor signal. The ability of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) to reduce the amount of IL-2 regulates the generation of Treg cells, but not T(H)17 cells. Under T(H)17-polarizing conditions, 1,25(OH)(2)D(3) helps to increase the numbers of IL-10-producing T cells, but 1,25(OH)(2)D(3)'s negative regulation of T(H)17 development is still defined in the IL-10(-/-) T cells. Although the STAT1 signal reciprocally affects the secretion of IL-10 and IL-17, 1,25(OH)(2)D(3) inhibits IL-17 production in STAT1(-/-) T cells. Most interestingly, 1,25(OH)(2)D(3) negatively regulates CCR6 expression which might be essential for T(H)17 cells to enter the central nervous system and initiate EAE. CONCLUSIONS/SIGNIFICANCE: Our present results in an experimental murine model suggest that 1,25(OH)(2)D(3) can directly regulate T cell differentiation and could be applied in preventive and therapeutic strategies for T(H)17-mediated autoimmune diseases

    Usefulness of drug provocation tests in children with a history of adverse drug reaction

    Get PDF
    PurposeThere are very few reports of adverse drug reactions (ADR) and almost no study of drug provocation test (DPT) in Korean children. We aimed to assess the role of DPT in children with unpredictable ADRs, and compare the causative drugs and clinical characteristics between detailed history of ADRs and result of DPTs.MethodsWe included 16 children who were experienced ADRs referred to pediatric allergy clinic at Ajou University Hospital (January 2006 to December 2009). With various suspected drugs, 71 DPTs were done in 16 patients using our own protocol, and skin tests to antibiotics were combined in ADRs to antibiotics in medical history.ResultsThere were 17 (23.9%) positive DPTs results out of 71 individual DPTs, and 11 patients (68.8%) from 16 patients were positive to at least one drug. Drugs causing positive reactions were acetaminophen in 5 (31%), Non-steroidal anti-inflammatory drugs in 4 (25%), penicillin in 3 (19%), cephalosporin in 2 (13%), and cotrimoxazole, macrolide and lactose in 1 each.ConclusionDPT seems a safe and useful procedure to confirm causative drug and identify safely administering alternative drugs in children with ADR

    Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Isolates Causing Invasive and Noninvasive Pneumococcal Diseases in Korea from 2008 to 2014

    Get PDF
    Introduction. Streptococcus pneumoniae is an important pathogen with high morbidity and mortality rates. The aim of this study was to evaluate the distribution of common serotypes and antimicrobial susceptibility of S. pneumoniae in Korea. Methods. A total of 378 pneumococcal isolates were collected from 2008 through 2014. We analyzed the serotype and antimicrobial susceptibility for both invasive and noninvasive isolates. Results. Over the 7 years, 3 (13.5%), 35 (10.8%), 19A (9.0%), 19F (6.6%), 6A (6.1%), and 34 (5.6%) were common serotypes/serogroups. The vaccine coverage rates of PCV7, PCV10, PCV13, and PPSV23 were 21.4%, 23.3%, 51.9%, and 62.4% in all periods. The proportions of serotypes 19A and 19F decreased and nonvaccine serotypes increased between 2008 and 2010 and 2011 and 2014. Of 378 S. pneumoniae isolates, 131 (34.7%) were multidrug resistant (MDR) and serotypes 19A and 19F were predominant. The resistance rate to levofloxacin was significantly increased (7.2%). Conclusion. We found changes of pneumococcal serotype and antimicrobial susceptibility during the 7 years after introduction of the first pneumococcal vaccine. It is important to continuously monitor pneumococcal serotypes and their susceptibilities

    A standardized pathology report for gastric cancer: 2nd edition

    Get PDF
    The first edition of โ€˜A Standardized Pathology Report for Gastric Cancerโ€™ was initiated by the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists and published 17 years ago. Since then, significant advances have been made in the pathologic diagnosis, molecular genetics, and management of gastric cancer (GC). To reflect those changes, a committee for publishing a second edition of the report was formed within the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists. This second edition consists of two parts: standard data elements and conditional data elements. The standard data elements contain the basic pathologic findings and items necessary to predict the prognosis of GC patients, and they are adequate for routine surgical pathology service. Other diagnostic and prognostic factors relevant to adjuvant therapy, including molecular biomarkers, are classified as conditional data elements to allow each pathologist to selectively choose items appropriate to the environment in their institution. We trust that the standardized pathology report will be helpful for GC diagnosis and facilitate large-scale multidisciplinary collaborative studies

    Identifying the mechanism underlying treatment failure for Salmonella Paratyphi A infection using next-generation sequencing โ€“ a case report

    No full text
    Abstract Background Salmonella is a notorious pathogen that causes gastroenteritis in humans and the emergence of resistance to third-generation cephalosporins and azithromycin have raised concern. There has been rare case of Salmonella Paratyphi A infection accompanied by spondylitis. Here, we report a case of initial antibiotic treatment failure in a Korean man with Salmonella Paratyphi A infection and conducted next-generation sequencing (NGS) to determine the cause of failure of initial treatment for Salmonella Paratyphi A infection. Case presentation A 70-year-old man was admitted to Chosun University Hospital with reported consistent low back pain with a history of having 5โ€‰days of chills and fever in another hospital a month ago. He was administered ceftriaxone (2โ€‰g daily) for 18โ€‰days including initial treatment to cover Salmonella enterica. The antimicrobial susceptibility test using MIC plate, found that the identified organism was resistant to ciprofloxacin and nalidixic acid. Moreover, the Salmonella Paratyphi A isolates were found to have an MIC >โ€‰16โ€‰mg/L for azithromycin, as he had resistance to both azithromycin and nalidixic acid, the treatment was switched to a combination of ciprofloxacin and cefotaxime. We carried out next-generation sequencing (NGS) to determine the cause of failure of initial treatment for Salmonella Paratyphi A infection. NGS showed that the amino acid substitution GyrA S83F and the expression of multiple RNA-family efflux pumps led to a high-level resistance to quinolone. No genes related to ceftriaxone resistance, such as CTX-M, CMY-2, or other extended-spectrum beta-lactamases were identified in Salmonella enterica Paratyphi A using NGS. The GyrA S83F mutation and the expression of multiple RNA-family efflux pumps may have contributed to the treatment failure of ceftriaxone, even though the MIC of the isolate to ceftriaxone was less than 1. Conclusion This case involved a Salmonella Paratyphi A infection accompanied by spondylitis. To our knowledge, this is the first report to elucidate the mechanism underlying antimicrobial resistance using NGS

    Hydrophilicity/porous structure-tuned, SiO2/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes

    No full text
    Porous substrate-reinforced composite proton exchange membranes have drawn considerable attention due to their promising application to polymer electrolyte membrane fuel cells (PEMFCs). In the present study, we develop silica (SiO2) nanoparticles/polyetherimide (PEI) binders-coated polyimide (PI) nonwoven porous substrates (referred to as "S-PI substrates") for reinforced composite membranes. The properties of S-PI substrates, which crucially affect the performance of resulting reinforced composite membranes, are significantly improved by controlling the hygroscopic SiO2 particle size. The 40 nm S-PI substrate (herein, 40 nm SiO2 particles are employed) shows the stronger hydrophilicity and highly porous structure than the 530 nm S-PI substrate due to the larger specific surface area of 40 nm SiO2 particles. Based on the comprehensive understanding of the S-PI substrates, the structures and performances of the S-PI substrates-reinforced composite membranes are elucidated. In comparison with the 530 nm S-PI substrate, the hydrophilicity/porous structure-tuned 40 nm S-PI substrate enables the impregnation of a large amount of a perfluorosulfonic acid ionomer (Nafion), which thus contributes to the improved proton conductivity of the reinforced Nafion composite membrane. Meanwhile, the reinforced Nafion composite membranes effectively mitigate the steep decline of proton conductivity with time at low humidity conditions, as compared to the pristine Nafion membrane. This intriguing finding is further discussed by considering the unusual features of the S-PI substrates and the state of water in the reinforced Nafion composite membranes.close5

    Dynamic motile T cells highly respond to the T cell stimulation via PI3K-Akt and NF-ฮบB pathways.

    Get PDF
    T lymphocytes (T cells) circulate from the blood into secondary lymphoid organs for immune surveillance. In this study, we hypothesized that circulating T cells are heterogeneous and can be grouped according to their differential migratory capacity in response to chemoattractants, rather than expressions of certain receptors or cytokines. We further hypothesized that, at least in part, this intrinsic difference in motility may be related to the T cell function. We established motile (m-T) and non-motile T (nm-T) cell lines based on their response to the chemokine SDF-1ฮฑ. m-T cells showed more irregular and polarized morphologies than nm-T cells did. Interestingly, m-T cells produced higher levels of IL-2, a marker for T cell activation, than nm-T cells did after stimulation; however, no differences were observed in terms of surface expression of T cell receptors (TCR), adhesion molecules LFA-1 and ICAM-1, and chemokine receptor CXCR4. Both cell lines also showed similar membrane events (i.e., T cell-APC conjugation, LFA-1 accumulation at the immunological synapse, and TCR internalization). In contrast, PKC-ฮธ, a downstream of PI3K-Akt pathway was constitutively activated in m-T cells and the activation was more prominent during T cell stimulation. Consequently, NF-ฮบB activity was selectively upregulated in m-T cells. This study is the first, to our knowledge, to demonstrate that T cells can be subcategorized on the basis of their intrinsic migratory capacity in relation to T cell activation
    • โ€ฆ
    corecore