53 research outputs found

    Towards single integrated spoofing-aware speaker verification embeddings

    Full text link
    This study aims to develop a single integrated spoofing-aware speaker verification (SASV) embeddings that satisfy two aspects. First, rejecting non-target speakers' input as well as target speakers' spoofed inputs should be addressed. Second, competitive performance should be demonstrated compared to the fusion of automatic speaker verification (ASV) and countermeasure (CM) embeddings, which outperformed single embedding solutions by a large margin in the SASV2022 challenge. We analyze that the inferior performance of single SASV embeddings comes from insufficient amount of training data and distinct nature of ASV and CM tasks. To this end, we propose a novel framework that includes multi-stage training and a combination of loss functions. Copy synthesis, combined with several vocoders, is also exploited to address the lack of spoofed data. Experimental results show dramatic improvements, achieving a SASV-EER of 1.06% on the evaluation protocol of the SASV2022 challenge.Comment: Accepted by INTERSPEECH 2023. Code and models are available in https://github.com/sasv-challenge/ASVSpoof5-SASVBaselin

    High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice

    Get PDF
    When expression of more than one gene is required in cells, bicistronic or multicistronic expression vectors have been used. Among various strategies employed to construct bicistronic or multicistronic vectors, an internal ribosomal entry site (IRES) has been widely used. Due to the large size and difference in expression levels between genes before and after IRES, however, a new strategy was required to replace IRES. A self-cleaving 2A peptide could be a good candidate to replace IRES because of its small size and high cleavage efficiency between genes upstream and downstream of the 2A peptide. Despite the advantages of the 2A peptides, its use is not widespread because (i) there are no publicly available cloning vectors harboring a 2A peptide gene and (ii) comprehensive comparison of cleavage efficiency among various 2A peptides reported to date has not been performed in different contexts. Here, we generated four expression plasmids each harboring different 2A peptides derived from the foot-and-mouth disease virus, equine rhinitis A virus, Thosea asigna virus and porcine teschovirus-1, respectively, and evaluated their cleavage efficiency in three commonly used human cell lines, zebrafish embryos and adult mice. Western blotting and confocal microscopic analyses revealed that among the four 2As, the one derived from porcine teschovirus-1 (P2A) has the highest cleavage efficiency in all the contexts examined. We anticipate that the 2A-harboring cloning vectors we generated and the highest efficiency of the P2A peptide we demonstrated would help biomedical researchers easily adopt the 2A technology when bicistronic or multicistronic expression is required

    A Three-Component Gene Expression System and Its Application for Inducible Flavonoid Overproduction in Transgenic Arabidopsis thaliana

    Get PDF
    Inducible gene expression is a powerful tool to study and engineer genes whose overexpression could be detrimental for the host organisms. However, only limited systems have been adopted in plant biotechnology. We have developed an osmotically inducible system using three components of plant origin, RD29a (Responsive to Dehydration 29A) promoter, CBF3 (C-repeat Binding Factor 3) transcription factor and cpl1-2 (CTD phosphatase-like 1) mutation. The osmotic stress responsible RD29a promoter contains the CBF3 binding sites and thus RD29A-CBF3 feedforward cassette enhances induction of RD29a promoter under stress. The cpl1-2 mutation in a host repressor CPL1 promotes stress responsible RD29a promoter expression. The efficacy of this system was tested using PAP1 (Production of Anthocyanin Pigment 1) transgene, a model transcription factor that regulates the anthocyanin pathway in Arabidopsis. While transgenic plants with only one or two of three components did not reproducibly accumulate anthocyanin pigments above the control level, transgenic cpl1 plants containing homozygous RD29a-PAP1 and RD29a-CBF3 transgenes produced 30-fold higher level of total anthocyanins than control plants upon cold treatment. Growth retardation and phytochemical production of transgenic plants were minimum under normal conditions. The flavonoid profile in cold-induced transgenic plants was determined by LC/MS/MS, which resembled that of previously reported pap1-D plants but enriched for kaempferol derivatives. These results establish the functionality of the inducible three-component gene expression system in plant metabolic engineering. Furthermore, we show that PAP1 and environmental signals synergistically regulate the flavonoid pathway to produce a unique flavonoid blend that has not been produced by PAP1 overexpression or cold treatment alone

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    Amperometric Detection of Parathion and Methyl Parathion with a Microhole-ITIES

    No full text
    An amperometric sensor featuring a microhole-liquid/gel interface for the detection of both parathion and methyl parathion is developed on the basis of their different kinetics behavior when interacting with the enzyme organophosphorus hydrolase (OPH). OPH hydrolyzes parathion and methyl parathion producing a common product of para-nitrophenol and either diethylthio- or dimethylthio- phosphoric acid, respectively, of which all can release protons depending upon their pKa values. The detection method for both organophosphate (OP) compounds is designed to measure the current associated with the transfer of protons released from the products of OPH hydrolysis across a polarized microhole-water/polyvinylchloride-nitrophenyloctylether (PVC-NOPE) gel interface. The selective transfer of protons across the interface is tailored by the use of a proton selective ligand, ETH 1778, in the gel layer. A disposable proton selective sensor that can quantitatively analyze the OP compounds is also fabricated using simple polydimethylsiloxane microfabrication. Cyclic voltammetry and differential pulse stripping voltammetry are first utilized to characterize the transfer of protons across the microhole-water/PVC-NPOE gel interface initiated by the OPH reaction with parathion and methyl parathion and to establish a detection limit for each OP compound. In order to sequentially detect parathion and methyl parathion using a single proton selective strip-sensor, a novel time-resolved detection methodology is developed based on the different catalytic kinetics of OPH with each OP analyte; the maximum peak current for the preconcentrated protons transferring back from the organic to water phase assisted by ETH 1778 increases proportionally to the concentration of each OP agent. Since the maximum peak currents for both OP analytes are observed at different reaction times it was possible to demonstrate the multiplexed analysis of both parathion and methyl parathion down to 0.5 mu M using a single sensor.X111817sciescopu

    Three cases of pancreatic pseudocysts associated with dorsal pancreatic agenesis

    No full text
    Agenesis of the dorsal pancreas (ADP) is an extremely rare congenital anomaly. Human pancreas is formed by ventral and dorsal endodermal buds of the foregut endoderm. The dorsal bud forms the upper part of the head, neck, body, and tail of the pancreas and the ventral bud generates most of the head and uncinate process. ADP is derived from the embryologic failure of the dorsal pancreatic bud to form the pancreatic body and tail. ADP can be related to some diseases and conditions such as pancreatitis, hypoglycemia, and rarely pancreatic tumors. The association between cystic lesions with ADP has previously been reported. Three cases of cystic lesions of the pancreas with ADP were diagnosed clinically based on the imaging features and without any past history of pancreatitis. However, the pathologic diagnosis of resected lesions confirmed pseudocysts without pathologic evidence of tumor. We report 3 cases of pancreatic pseudocysts associated with ADP Keywords: Pseudocyst, Dorsal pancreatic agenesis, Pancreatic tumo
    corecore