13 research outputs found

    Transport in Porous Media of Highly Concentrated Iron Micro- and Nanoparticles in the Presence of Xanthan Gum

    No full text
    The ability of xanthan gum to act as a delivery vehicle for the transport in porous media of highly concentrated nano- and microscale zerovalent iron (NZVI and MZVI, respectively) slurries was investigated. Sand-packed column experiments were performed injecting iron suspensions at a concentration of 20 g/L, amended with xanthan gum (3 g/L), at different ionic strength values (6 × 10-3 mM or 12.5 mM) in 0.46 m long columns. Breakthrough curves of iron, obtained by in-line continuous measurement of magnetic susceptibility, under each experimental condition showed that normalized elution concentration at the end of the injection (i.e., after 7 or 26 pore volumes) is higher for MZVI (>0.94) than for NZVI (>0.88). Additional susceptibility measurements along the column and pressure drop also confirmed that MZVI is more easily eluted than NZVI. Moreover, water flushing after the iron injection phase lead to recoveries of over 95% for MZVI, and over 92% for NZVI of the total injected iron mass. The tests proved that xanthan gum is an excellent stabilizing agent and delivery vehicle of ZVI particles and has a high potential for use in real scale remediation intervention
    corecore