6,933 research outputs found

    Multipole Expansions of Aggregate Charge: How Far to Go?

    Full text link
    Aggregates immersed in a plasma or radiative environment will have charge distributed over their extended surface. Previous studies have modeled the aggregate charge using the monopole and dipole terms of a multipole expansion, with results indicating that the dipole-dipole interactions play an important role in increasing the aggregation rate and altering the morphology of the resultant aggregates. This study examines the effect that including the quadrupole terms has on the dynamics of aggregates interacting with each other and the confining electric fields in laboratory experiments. Results are compared to modeling aggregates as a collection of point charges located at the center of each spherical monomer comprising the aggregate.Comment: 6 page

    The life history of Henslow's Sparrow, Passerherbulus henslowi (Audubon)

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56286/1/MP041.pd

    Conformational transformations induced by the charge-curvature interaction at finite temperature

    Get PDF
    The role of thermal fluctuations on the conformational dynamics of a single closed filament is studied. It is shown that, due to the interaction between charges and bending degrees of freedom, initially circular aggregates may undergo transformation to polygonal shape. The transition occurs both in the case of hardening and softening charge-bending interaction. In the former case the charge and curvature are smoothly distributed along the chain while in the latter spontaneous kink formation is initiated. The transition to a non-circular conformation is analogous to the phase transition of the second kind.Comment: 23 pages (Latex), 10 figures (Postscript), 2 biblio file (bib-file and bbl-file

    First year student radiographers’ perceptions of a one-week simulation-based education package designed to increase clinical placement capacity

    Get PDF
    The radiography workforce is short-staffed and under increasing pressure to meet service pressures. Combined with the impact of Covid-19, where student face-to-face clinical time was abruptly halted for safety, there is cause to change the pedagogical approach to teaching diagnostic radiography to students, increasing capacity and ensuring the continuance of qualifying radiographers to support the profession. This paper shares the perceptions of first year student radiographers on a one-week simulation-based education package designed to replace one week of clinical placement experience. Two cohorts of first-year radiography students engaged in a one-week simulation-based education package. Simulations increased in complexity throughout the week and included conventional imaging techniques, mobile and theatre radiography, and cross-sectional imaging. Thirty-six students consented to the thematic analysis of their reflective blogs. Five themes emerged from the data: feeling anxious, understanding and skill development, building confidence, communication, and patient-centred care. The simulation package had a positive impact on students learning, no matter the stage at which it was incorporated into their clinical placement block. Students engaged well with the activities and saw value in the experience. The findings indicate that the simulation-based education package is a suitable replacement for one week of clinical placement, supporting skills development in students and providing increased placement capacity. A successful, engaging simulation-based education package is presented, which first year student radiographers perceived as a suitable replacement for one-week of clinical placement. Further research into the acceptability of use of simulation-based education packages in second- and third-year student radiographers would be a useful next step

    Dispersion Relations for Thermally Excited Waves in Plasma Crystals

    Full text link
    Thermally excited waves in a Plasma crystal were numerically simulated using a Box_Tree code. The code is a Barnes_Hut tree code proven effective in modeling systems composed of large numbers of particles. Interaction between individual particles was assumed to conform to a Yukawa potential. Particle charge, mass, density, Debye length and output data intervals are all adjustable parameters in the code. Employing a Fourier transform on the output data, dispersion relations for both longitudinal and transverse wave modes were determined. These were compared with the dispersion relations obtained from experiment as well as a theory based on a harmonic approximation to the potential. They were found to agree over a range of 0.9<k<5, where k is the shielding parameter, defined by the ratio between interparticle distance a and dust Debye length lD. This is an improvement over experimental data as current experiments can only verify the theory up to k = 1.5.Comment: 8 pages, Presented at COSPAR '0

    Unconventional magnetism in all-carbon nanofoam

    Get PDF
    We report production of nanostructured carbon foam by a high-repetition-rate, high-power laser ablation of glassy carbon in Ar atmosphere. A combination of characterization techniques revealed that the system contains both sp2 and sp3 bonded carbon atoms. The material is a novel form of carbon in which graphite-like sheets fill space at very low density due to strong hyperbolic curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like behaviour up to 90 K, with a narrow hysteresis curve and a high saturation magnetization. Such magnetic properties are very unusual for a carbon allotrope. Detailed analysis excludes impurities as the origin of the magnetic signal. We postulate that localized unpaired spins occur because of topological and bonding defects associated with the sheet curvature, and that these spins are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10 September 200

    Characteristics, accuracy and reverification of robotised articulated arm CMMs

    Get PDF
    VDI article 2617 specifies characteristics to describe the accuracy of articulated arm coordinate measuring machines (AACMMs) and outlines procedures for checking them. However the VDI prescription was written with a former generation of machines in mind: manual arms exploiting traditional touch probe technologies. Recent advances in metrology have given rise to noncontact laser scanning tools and robotic automation of articulated arms – technologies which are not adequately characterised using the VDI specification. In this paper we examine the “guidelines” presented in VDI 2617, finding many of them to be ambiguous and open to interpretation, with some tests appearing even to be optional. The engineer is left significant flexibility in the execution of the test procedures and the manufacturer is free to specify many of the test parameters. Such flexibility renders the VDI tests of limited value and the results can be misleading. We illustrate, with examples using the Nikon RCA, how a liberal interpretation of the VDI guidelines can significantly improve accuracy characterisation and suggest ways in which to mitigate this problem. We propose a series of stringent tests and revised definitions, in the same vein as VDI 2617 and similar US standards, to clarify the accuracy characterisation process. The revised methodology includes modified acceptance and reverification tests which aim to accommodate emerging technologies, laser scanning devices in particular, while maintaining the spirit of the existing and established standards. We seek to supply robust re-definitions for the accepted terms “zero point” and “useful arm length”, pre-supposing nothing about the geometry of the measuring device. We also identify a source of error unique to robotised AACMMs employing laser scanners – the forward-reverse pass error. We show how eliminating this error significantly improves the repeatability of a device and propose a novel approach to the testing of probing error based on statistical uncertainty
    • 

    corecore