10 research outputs found

    Novel Proteomic Biomarker Panel for Prediction of Aggressive Metastatic Hepatocellular Carcinoma Relapse in Surgically Resectable Patients

    No full text
    The natural course of early HCC is unknown, and its progression to intermediate and advanced HCC can be diverse. Some early stage HCC patients enjoy prolonged disease-free survival, whereas others suffer aggressive relapse to stage IV metastatic cancer within a year. Comparative proteomics of HCC tumor tissues was carried out using 2D-DIGE and MALDI-TOF/TOF MS to identify proteins that can distinguish these two groups of stage I HCC patients. Twelve out of 148 differentially regulated protein spots were found to differ by approximately 2-fold for the relapse versus nonrelapse patient tissues. Four proteins, namely, heat shock 70 kDa protein 1, argininosuccinate synthase, isoform 2 of UTP-glucose-1-phosphate uridylyltransferase, and transketolase, were shown to have the potential to differentiate metastatic relapse (MR) from nonrelapse (NR) HCC patients after validation by western blotting and immunohistochemical assays. Subsequent TMA analysis revealed a three marker panel of HSP70, ASS1, and UGP2 to be statistically significant in stratifying the two groups of HCC patients. This combination panel achieved high levels of sensitivity and specificity, which has potential for clinical use in identifying HCC tumors prone to MR. This stratification will allow development of clinical management, including close follow-up and possibly treatment options, in the near future

    Novel Proteomic Biomarker Panel for Prediction of Aggressive Metastatic Hepatocellular Carcinoma Relapse in Surgically Resectable Patients

    No full text
    The natural course of early HCC is unknown, and its progression to intermediate and advanced HCC can be diverse. Some early stage HCC patients enjoy prolonged disease-free survival, whereas others suffer aggressive relapse to stage IV metastatic cancer within a year. Comparative proteomics of HCC tumor tissues was carried out using 2D-DIGE and MALDI-TOF/TOF MS to identify proteins that can distinguish these two groups of stage I HCC patients. Twelve out of 148 differentially regulated protein spots were found to differ by approximately 2-fold for the relapse versus nonrelapse patient tissues. Four proteins, namely, heat shock 70 kDa protein 1, argininosuccinate synthase, isoform 2 of UTP-glucose-1-phosphate uridylyltransferase, and transketolase, were shown to have the potential to differentiate metastatic relapse (MR) from nonrelapse (NR) HCC patients after validation by western blotting and immunohistochemical assays. Subsequent TMA analysis revealed a three marker panel of HSP70, ASS1, and UGP2 to be statistically significant in stratifying the two groups of HCC patients. This combination panel achieved high levels of sensitivity and specificity, which has potential for clinical use in identifying HCC tumors prone to MR. This stratification will allow development of clinical management, including close follow-up and possibly treatment options, in the near future

    Identification and Functional Validation of Caldesmon as a Potential Gastric Cancer Metastasis-associated Protein

    No full text
    In this study, we aim to identify biomarkers for gastric cancer metastasis using a quantitative proteomics approach. The proteins extracted from a panel of 4 gastric cancer cell lines, two derived from primary cancer (AGS, FU97) and two from lymph node metastasis (AZ521, MKN7), were labeled with iTRAQ (8-plex) reagents and analyzed by 2D-LC–MALDI-TOF/TOF MS. In total, 641 proteins were identified with at least a 95% confidence. Using cutoff values of >1.5 and <0.67, 19 proteins were found to be up-regulated and 34 were down-regulated in the metastatic versus primary gastric cancer cell lines respectively. Several of these dysregulated proteins, including caldesmon, were verified using Western blotting. It was found that caldesmon expression was decreased in the two metastasis-derived cell lines, and this was confirmed by further analysis of 7 gastric cancer cell lines. Furthermore, immunohistochemical staining of 9 pairs of primary gastric cancer and the matched lymph node metastasis tissue also corroborated this observation. Finally, knockdown of caldesmon using siRNA in AGS and FU97 gastric cancer cells resulted in an increase in cell migration and invasion, while the overexpression of caldesmon in AZ521 cells led to a decrease in cell migration and invasion. This study has thus established the potential role of caldesmon in gastric cancer metastasis, and further functional studies are underway to delineate the underlying mechanism of action of this protein

    Identification and Functional Validation of Caldesmon as a Potential Gastric Cancer Metastasis-associated Protein

    No full text
    In this study, we aim to identify biomarkers for gastric cancer metastasis using a quantitative proteomics approach. The proteins extracted from a panel of 4 gastric cancer cell lines, two derived from primary cancer (AGS, FU97) and two from lymph node metastasis (AZ521, MKN7), were labeled with iTRAQ (8-plex) reagents and analyzed by 2D-LC–MALDI-TOF/TOF MS. In total, 641 proteins were identified with at least a 95% confidence. Using cutoff values of >1.5 and <0.67, 19 proteins were found to be up-regulated and 34 were down-regulated in the metastatic versus primary gastric cancer cell lines respectively. Several of these dysregulated proteins, including caldesmon, were verified using Western blotting. It was found that caldesmon expression was decreased in the two metastasis-derived cell lines, and this was confirmed by further analysis of 7 gastric cancer cell lines. Furthermore, immunohistochemical staining of 9 pairs of primary gastric cancer and the matched lymph node metastasis tissue also corroborated this observation. Finally, knockdown of caldesmon using siRNA in AGS and FU97 gastric cancer cells resulted in an increase in cell migration and invasion, while the overexpression of caldesmon in AZ521 cells led to a decrease in cell migration and invasion. This study has thus established the potential role of caldesmon in gastric cancer metastasis, and further functional studies are underway to delineate the underlying mechanism of action of this protein

    Mining the Gastric Cancer Secretome: Identification of GRN as a Potential Diagnostic Marker for Early Gastric Cancer

    No full text
    Gastric cancer is the second leading cause of cancer deaths worldwide, and currently, there are no clinically relevant biomarkers for gastric cancer diagnosis or prognosis. In this study, we applied a 2D-LC-MS/MS based approach, in combination with iTRAQ labeling, to study the secretomes of the gastric cancer cell lines AGS and MKN7. By performing a comparative analysis between the conditioned media and the whole cell lysates, our workflow allowed us to differentiate the <i>bona fide</i> secreted proteins from the intracellular contaminants within the conditioned media. Ninety proteins were found to have higher abundance in the conditioned media as compared to the whole cell lysates of AGS and MKN7 cells. Using a signal peptide and nonclassical secretion prediction tool and an online exosome database, we demonstrated that up to 92.2% of these 90 proteins can be exported out of the cells by classical or nonclassical secretory pathways. We then performed quantitative comparisons of the secretomes between AGS and MKN7, identifying 43 differentially expressed secreted proteins. Among them, GRN was found to be frequently expressed in gastric tumor tissues, but not in normal gastric epithelia by immunohistochemistry. Sandwich ELISA assay also showed elevation of serum GRN levels in gastric cancer patients, particularly those with early gastric cancer. Receiver operating characteristic (ROC) curves analysis confirmed that serum GRN can provide diagnostic discriminations for gastric cancer patient

    Mining the Gastric Cancer Secretome: Identification of GRN as a Potential Diagnostic Marker for Early Gastric Cancer

    No full text
    Gastric cancer is the second leading cause of cancer deaths worldwide, and currently, there are no clinically relevant biomarkers for gastric cancer diagnosis or prognosis. In this study, we applied a 2D-LC-MS/MS based approach, in combination with iTRAQ labeling, to study the secretomes of the gastric cancer cell lines AGS and MKN7. By performing a comparative analysis between the conditioned media and the whole cell lysates, our workflow allowed us to differentiate the <i>bona fide</i> secreted proteins from the intracellular contaminants within the conditioned media. Ninety proteins were found to have higher abundance in the conditioned media as compared to the whole cell lysates of AGS and MKN7 cells. Using a signal peptide and nonclassical secretion prediction tool and an online exosome database, we demonstrated that up to 92.2% of these 90 proteins can be exported out of the cells by classical or nonclassical secretory pathways. We then performed quantitative comparisons of the secretomes between AGS and MKN7, identifying 43 differentially expressed secreted proteins. Among them, GRN was found to be frequently expressed in gastric tumor tissues, but not in normal gastric epithelia by immunohistochemistry. Sandwich ELISA assay also showed elevation of serum GRN levels in gastric cancer patients, particularly those with early gastric cancer. Receiver operating characteristic (ROC) curves analysis confirmed that serum GRN can provide diagnostic discriminations for gastric cancer patient

    Mining the Gastric Cancer Secretome: Identification of GRN as a Potential Diagnostic Marker for Early Gastric Cancer

    No full text
    Gastric cancer is the second leading cause of cancer deaths worldwide, and currently, there are no clinically relevant biomarkers for gastric cancer diagnosis or prognosis. In this study, we applied a 2D-LC-MS/MS based approach, in combination with iTRAQ labeling, to study the secretomes of the gastric cancer cell lines AGS and MKN7. By performing a comparative analysis between the conditioned media and the whole cell lysates, our workflow allowed us to differentiate the <i>bona fide</i> secreted proteins from the intracellular contaminants within the conditioned media. Ninety proteins were found to have higher abundance in the conditioned media as compared to the whole cell lysates of AGS and MKN7 cells. Using a signal peptide and nonclassical secretion prediction tool and an online exosome database, we demonstrated that up to 92.2% of these 90 proteins can be exported out of the cells by classical or nonclassical secretory pathways. We then performed quantitative comparisons of the secretomes between AGS and MKN7, identifying 43 differentially expressed secreted proteins. Among them, GRN was found to be frequently expressed in gastric tumor tissues, but not in normal gastric epithelia by immunohistochemistry. Sandwich ELISA assay also showed elevation of serum GRN levels in gastric cancer patients, particularly those with early gastric cancer. Receiver operating characteristic (ROC) curves analysis confirmed that serum GRN can provide diagnostic discriminations for gastric cancer patient

    Proteomic Analysis of Colorectal Cancer Metastasis: Stathmin-1 Revealed as a Player in Cancer Cell Migration and Prognostic Marker

    No full text
    Metastasis accounts largely for the high mortality rate of colorectal cancer (CRC) patients. In this study, we performed comparative proteome analysis of primary CRC cell lines HCT-116 and its metastatic derivative E1 using 2-D DIGE. We identified 74 differentially expressed proteins, many of which function in transcription, translation, angiogenesis signal transduction, or cytoskeletal remodeling pathways, which are indispensable cellular processes involved in the metastatic cascade. Among these proteins, stathmin-1 (STMN1) was found to be highly up-regulated in E1 as compared to HCT-116 and was thus selected for further functional studies. Our results showed that perturbations in STMN1 levels resulted in significant changes in cell migration, invasion, adhesion, and colony formation. We further showed that the differential expression of STMN1 correlated with the cells’ metastatic potential in other paradigms of CRC models. Using immunohistochemistry, we also showed that STMN1 was highly expressed in colorectal primary tumors and metastatic tissues as compared to the adjacent normal colorectal tissues. Furthermore, we also showed via tissue microarray analyses of 324 CRC tissues and Kaplan–Meier survival plot that CRC patients with higher expression of STMN1 have poorer prognosis

    Proteomic Analysis of Colorectal Cancer Metastasis: Stathmin-1 Revealed as a Player in Cancer Cell Migration and Prognostic Marker

    No full text
    Metastasis accounts largely for the high mortality rate of colorectal cancer (CRC) patients. In this study, we performed comparative proteome analysis of primary CRC cell lines HCT-116 and its metastatic derivative E1 using 2-D DIGE. We identified 74 differentially expressed proteins, many of which function in transcription, translation, angiogenesis signal transduction, or cytoskeletal remodeling pathways, which are indispensable cellular processes involved in the metastatic cascade. Among these proteins, stathmin-1 (STMN1) was found to be highly up-regulated in E1 as compared to HCT-116 and was thus selected for further functional studies. Our results showed that perturbations in STMN1 levels resulted in significant changes in cell migration, invasion, adhesion, and colony formation. We further showed that the differential expression of STMN1 correlated with the cells’ metastatic potential in other paradigms of CRC models. Using immunohistochemistry, we also showed that STMN1 was highly expressed in colorectal primary tumors and metastatic tissues as compared to the adjacent normal colorectal tissues. Furthermore, we also showed via tissue microarray analyses of 324 CRC tissues and Kaplan–Meier survival plot that CRC patients with higher expression of STMN1 have poorer prognosis

    Identification of Potential Pathways Involved in Induction of Apoptosis by Butyrate and 4‑Benzoylbutyrate in HT29 Colorectal Cancer Cells

    No full text
    Butyrate and its analogues have long been investigated as potential chemotherapeutic agents. Our previous structure–activity relationship studies of butyrate analogues revealed that 4-benzoylbutyrate had comparable in vitro effects to butyrate when used to treat HT29 and HCT116 colorectal cancer cell lines. The aim of this study was to identify potential mechanisms associated with the antitumorigenic effects of 4-benzoylbutyrate. In this study, butyrate, 3-hydroxybutyrate and 4-benzoylbutyrate were also investigated for their effects on histone deacetylase (HDAC) activity and histone H4 acetylation in HT29 and HCT116 cells. The biological effects of these analogues on HT29 cells were further investigated using quantitative proteomics to determine the proteins potentially involved in their apoptotic and antiproliferative effects. Because 3-hydroxybutyrate had minimal to no effect on apoptosis, proliferation or HDAC activity, this analogue was used to identify differentially expressed proteins that were potentially specific to the apoptotic effects of butyrate and/or 4-benzoylbutyrate. Butyrate treatment inhibited HDAC activity and induced H4 acetylation. 4-Benzoylbutyrate inhibited HDAC activity but failed to enhance H4 acetylation. Proteomic analysis revealed 20 proteins whose levels were similarly altered by both butyrate and 4-benzoylbutyrate. Proteins that showed common patterns of differential regulation in the presence of either butyrate or 4-benzoylbutyrate included c-Myc transcriptional targets, proteins involved in ER homeostasis, signal transduction pathways and cell energy metabolism. Although an additional 23 proteins were altered by 4-benzoylbutyrate uniquely, further work is required to understand the mechanisms involved in its apoptotic effects
    corecore