532 research outputs found

    Comment about UV regularization of basic commutators in string theories

    Get PDF
    Recently proposed by Hwang, Marnelius and Saltsidis zeta regularization of basic commutators in string theories is generalized to the string models with non-trivial vacuums. It is shown that implementation of this regularization implies the cancellation of dangerous terms in the commutators between Virasoro generators, which break Jacobi identity.Comment: LaTeX, 9 pages, no figures, submitted to Physics Letters

    Targeting reactive carbonyl species with natural sequestering agents

    Get PDF
    Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives

    Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges

    Full text link
    We study the resonant tunneling of quasiparticles through an impurity between the edges of a Fractional Quantum Hall sample. We show that the one-particle momentum distribution of fractionally charged edge quasiparticles has a quasi-Fermi character. The density of states near the quasi-Fermi energy at zero temperature is singular due to the statistical interaction of quasiparticles. Another effect of this interaction is a new selection rule for the resonant tunneling of fractionally charged quasiparticles: the resonance is suppressed unless an integer number of {\em electrons} occupies the impurity. It allows a new explanation of the scaling behavior observed in the mesoscopic fluctuations of the conductivity in the FQHE.Comment: 7 pages, REVTeX 3.0, Preprint SU-ITP-93-1

    Entropic force and its cosmological implications

    Full text link
    We investigate a possibility of realizing the entropic force into the cosmology. A main issue is how the holographic screen is implemented in the Newtonian cosmology. Contrary to the relativistic realization of Friedmann equations, we do not clarify the connection between Newtonian cosmology and entropic force because there is no way of implementing the holographic screen in the Newtonian cosmology.Comment: 16 pages, no figures, version "Accepted for publication in Astrophysics & Space Science

    Thorn-like TiO2 nanoarrays with broad spectrum antimicrobial activity through physical puncture and photocatalytic action

    Get PDF
    To overcome the conventional limitation of TiO2 disinfection being ineffective under light-free conditions, TiO2 nanowire films (TNWs) were prepared and applied to bacterial disinfection under dark and UV illumination. TNW exhibited much higher antibacterial efficiencies against Escherichia coli (E. coli) under dark and UV illumination conditions compared to TiO2 nanoparticle film (TNP) which was almost inactive in the dark, highlighting the additional contribution of the physical interaction between bacterial membrane and NWs. Such a physical contact-based antibacterial activity was related to the NW geometry such as diameter, length, and density. The combined role of physical puncture and photocatalytic action in the mechanism underlying higher bactericidal effect of TNW was systematically examined by TEM, SEM, FTIR, XPS, and potassium ion release analyses. Moreover, TNW revealed antimicrobial activities in a broad spectrum of microorganisms including Staphylococcus aureus and MS2 bacteriophage, antibiofilm properties, and good material stability. Overall, we expect that the free-standing and antimicrobial TNW is a promising agent for water disinfection and biomedical applications in the dark and/or UV illumination.11Ysciescopu

    Dynamics of false vacuum bubbles: beyond the thin shell approximation

    Full text link
    We numerically study the dynamics of false vacuum bubbles which are inside an almost flat background; we assumed spherical symmetry and the size of the bubble is smaller than the size of the background horizon. According to the thin shell approximation and the null energy condition, if the bubble is outside of a Schwarzschild black hole, unless we assume Farhi-Guth-Guven tunneling, expanding and inflating solutions are impossible. In this paper, we extend our method to beyond the thin shell approximation: we include the dynamics of fields and assume that the transition layer between a true vacuum and a false vacuum has non-zero thickness. If a shell has sufficiently low energy, as expected from the thin shell approximation, it collapses (Type 1). However, if the shell has sufficiently large energy, it tends to expand. Here, via the field dynamics, field values of inside of the shell slowly roll down to the true vacuum and hence the shell does not inflate (Type 2). If we add sufficient exotic matters to regularize the curvature near the shell, inflation may be possible without assuming Farhi-Guth-Guven tunneling. In this case, a wormhole is dynamically generated around the shell (Type 3). By tuning our simulation parameters, we could find transitions between Type 1 and Type 2, as well as between Type 2 and Type 3. Between Type 2 and Type 3, we could find another class of solutions (Type 4). Finally, we discuss the generation of a bubble universe and the violation of unitarity. We conclude that the existence of a certain combination of exotic matter fields violates unitarity.Comment: 40 pages, 41 figure

    Instability of generalised AdS black holes and thermal field theory

    Full text link
    We study black holes in AdS-like spacetimes, with the horizon given by an arbitrary positive curvature Einstein metric. A criterion for classical instability of such black holes is found in the large and small black hole limits. Examples of large unstable black holes have a B\"ohm metric as the horizon. These, classically unstable, large black holes are locally thermodynamically stable. The gravitational instability has a dual description, for example by using the AdS7×S4AdS_7 \times S^4 version of the AdS/CFT correspondence. The instability corresponds to a critical temperature of the dual thermal field theory defined on a curved background.Comment: 1+16 pages. 1 figure. LaTeX. Minor clarification

    A boundary value problem for the five-dimensional stationary rotating black holes

    Full text link
    We study the boundary value problem for the stationary rotating black hole solutions to the five-dimensional vacuum Einstein equation. Assuming the two commuting rotational symmetry and the sphericity of the horizon topology, we show that the black hole is uniquely characterized by the mass, and a pair of the angular momenta.Comment: 16 pages, no figure

    Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories

    Get PDF
    We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon with the accompanying polarizations. We also include direct interactions among fluids and fields. The background FLRW model includes the general spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions solved separately in different gauge conditions we can naturally check the numerical accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.
    • 

    corecore