501 research outputs found

    White Light-Activated Antimicrobial Paint using Crystal Violet

    Get PDF
    Crystal violet (CV) was incorporated into acrylic latex to produce white-light-activated antimicrobial paint (WLAAP). Measurement of the water contact angle of the WLAAP showed that the water contact angle increased with increasing CV concentration. In a leaching test over 120 h, the amount of CV that leached from the WLAAPs was close to the detection limit (1.8 log) at the highest CV concentration (1000 ppm). These WLAAPs are promising candidates for use in healthcare facilities to reduce HAIs

    Crystal Violet-Impregnated Slippery Surface to Prevent Bacterial Contamination of Surfaces

    Get PDF
    Biofilms which are self-organized communities can contaminate various infrastructural systems. Preventing bacterial adhesion on surfaces is more desirable than cleaning or disinfection of bacteria-contaminated surfaces. In this study, a 24 h bacterial adhesion test showed that “slippery surfaces” had increased resistance to bacterial contamination compared to polydimethylsiloxane and superhydrophobic surfaces. However, it did not completely inhibit bacterial attachment, indicating that it only retards surface contamination by bacteria. Hence, a strategy of killing bacteria with minimal bacterial adhesion was developed. A crystal violet-impregnated slippery (CVIS) surface with bactericidal and slippery features was produced through a simple dipping process. The CVIS surface had a very smooth and lubricated surface that was highly repellent to water and blood contamination. Bactericidal tests against Escherichia coli and Staphylococcus aureus showed that the CVIS surface exhibited bactericidal activity in dark and also showed significantly enhanced bactericidal activity (>3 log reduction in bacteria number) in white light

    The Evolution of Diffuse Radio Sources in Galaxy Clusters

    Full text link
    We investigate the evolution and number distribution of radio halos in galaxy clusters. Without re-acceleration or regeneration, the relativistic electrons responsible for the diffuse radio emission will lose their energy via inverse-Compton and synchrotron losses in a rather short time, and radio halos will have lifetimes ∌\sim 0.1 Gyr. Radio halos could last for ∌\sim Gyr if a significant level of re-acceleration is involved. The lifetimes of radio halos would be comparable with the cosmological time if the radio-emitting electrons are mainly the secondary electrons generated by pion decay following proton-proton collisions between cosmic-ray protons and the thermal intra-cluster medium within the galaxy clusters. Adopting both observational and theoretical constraints for the formation of radio halos, we calculate the formation rates and the comoving number density of radio halos in the hierarchical clustering scheme. Comparing with observations, we find that the lifetimes of radio halos are ∌\sim Gyr. Our results indicate that a significant level of re-acceleration is necessary for the observed radio halos and the secondary electrons may not be a dominant origin for radio halos.Comment: 22 pages, 6 figures, ApJ, in press (v2:Corrected typos.

    White light-activated antimicrobial surfaces: effect of nanoparticles type on activity

    Get PDF
    Toluidine blue O (TBO) dye together with either silver (Ag) nanoparticles (NPs), gold (Au) NPs, or a mixture of Ag and Au NPs (Mix Ag–Au NPs) were incorporated into polyurethane to make antimicrobial surfaces using a swell-encapsulation-shrink process. Antimicrobial testing against Escherichia coli showed that inclusion of the NPs significantly enhanced the antimicrobial activities of the TBO polyurethane samples. In particular, samples containing Ag NPs exhibited potent antimicrobial activity under white light and surprisingly, also in the dark. The numbers of viable bacteria decreased below the detection limit on the TBO/Ag NPs incorporated samples within 3 h and 24 h under white light and dark conditions. A mechanistic study using furfuryl alcohol indicated that the enhanced photobactericidal activity was most likely due to a type I photochemical reaction. To the best of our knowledge, this is the first report of an antimicrobial surface comprised of a combination of Ag NPs and a light activated agent to provide a dual kill mechanism. These surfaces are promising candidates for use in healthcare environments to reduce the incidence of hospital-acquired infections

    Continuous Single-Phase Synthesis of [Au₂₅(Cys)₁₈] Nanoclusters and their Photobactericidal Enhancement

    Get PDF
    Thiolate–gold nanoclusters have various applications. However, most of the synthesis methods require prolonged synthesis times from several hours to days. In the present study, we report a rapid synthesis method for [Au25(Cys)18] nanoclusters and their application for photobactericidal enhancement. For [Au25(Cys)18] synthesis, we employed a tube-in-tube membrane reactor using CO as a reducing agent at elevated temperatures. This approach allows continuous generation of high-quality [Au25(Cys)18] within 3 min. Photobactericidal tests against Staphylococcus aureus showed that crystal violet-treated polymer did not have photobactericidal activity, but addition of [Au25(Cys)18] in the treated polymer demonstrated a potent photobactericidal activity at a low white light flux, resulting in >4.29 log reduction in viable bacteria numbers. Steady-state and time-resolved photoluminescence spectroscopies demonstrated that after light irradiation, photoexcited electrons in crystal violet flowed to [Au25(Cys)18] in the silicone, suggesting that redox reaction from [Au25(Cys)18] enhanced the photobactericidal activity. Stability tests revealed that leaching of crystal violet and [Au25(Cys)18] from the treated silicone was negligible and cyclic testing showed that the silicone maintained a strong photobactericidal activity after repeated use

    Zn and N codoped TiO2 thin films: photocatalytic and bactericidal activity.

    Get PDF
    We explore a series of Zn and N codoped TiO2 thin films grown using chemical vapor deposition. Films were prepared with various concentrations of Zn (0.4-2.9 at. % Zn vs Ti), and their impact on superoxide formation, photocatalytic activity, and bactericidal properties were determined. Superoxide (O2‱-) formation was assessed using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium sodium salt (XTT) as an indicator, photocatalytic activity was determined from the degradation of stearic acid under UVA light, and bactericidal activity was assessed using a Gram-negative bacterium E. coli under both UVA and fluorescent light (similar to what is found in a clinical environment). The 0.4% Zn,N:TiO2 thin film demonstrated the highest formal quantum efficiency in degrading stearic acid (3.3 × 10-5 molecules·photon-1), while the 1.0% Zn,N:TiO2 film showed the highest bactericidal activity under both UVA and fluorescent light conditions (>3 log kill). The enhanced efficiency of the films was correlated with increased charge carrier lifetime, supported by transient absorption spectroscopy (TAS) measurements

    Rapid Synthesis of [Au₂₅(Cys)₁₈] Nanoclusters via Carbon Monoxide in Microfluidic Liquid-Liquid Segmented Flow System and their Antimicrobial Performance

    Get PDF
    Atomically precise thiolate-gold nanoclusters with well-defined structures attract attention for use in various applications. However, most of the recently reported synthetic methods rely on prolonged synthesis times (a few hours to days) in order to produce high purity materials with a single cluster size. Such extended synthesis times make these processes ill-suited for adaptation to industrial scale production with continuous flow. In this work, an improved method for the synthesis of thiolated Au25 nanoclusters is presented utilising a microfluidic system and CO-mediated reduction. The optimized system, based on a coiled flow inverter with inner diameter of 1 mm operating at 80 °C and 500 kPa took only 3 min for the synthesis of atomically precise cysteine-capped [Au25(Cys)18] nanoclusters, as characterized by ultraviolet–visible spectroscopy and electrospray ionization mass spectrometry. The productivity of the system was increased by using higher reactant concentrations which led to a throughput of 0.9 gAu per day, without changing the reaction time or affecting the product purity. The Au nanoclusters were used as photobactericidal enhancement materials. In antimicrobial testing against S. aureus, encapsulation of the Au nanoclusters into crystal violet impregnated silicone showed high photobactericidal activity (~1.7 log reduction in viable bacteria) upon 6 h illumination of white light at ~312 lx, while crystal violet did not show significant photobactericidal activity on its own

    In-situ acceleration of subrelativistic electrons in the Coma halo and the halo's influence on the Sunyaev-Zeldovich effect

    Get PDF
    The stochastic acceleration of subrelativistic electrons from a background plasma is studied in order to find a possible explanation of the hard X-ray (HXR) emission detected from the Coma cluster. We calculate the necessary energy supply as a function of the plasma temperature and of the electron energy. We show that, for the same value of the HXR flux, the energy supply changes gradually from its high value (when emitting particle are non-thermal) to lower values (when the electrons are thermal). The kinetic equations we use include terms describing particle thermalization as well as momentum diffusion due to the Fermi II acceleration. We show that the temporal evolution of the particle distribution function has, at its final stationary stage, a rather specific form: it cannot be described by simple exponential or power-law expressions. A broad transfer region is formed by Coulomb collisions at energies between the Maxwellian and power-law parts of the distribution function. In this region the radiative lifetime of a single electron differs greatly from the lifetime of the distribution function as a whole. For a plasma temperature of 8 keV, the particles emitting bremsstrahlung at 20-80 keV lie in this quasi-thermal regime. We show that the energy supply required by quasi-thermal electrons to produce the observed HXR flux from Coma is one or two orders of magnitude smaller than the value derived from the assumption of a nonthermal origin of the emitting particles. This result may solve the problem of rapid cluster overheating by nonthermal electrons. We finally predict the change in Coma's SZ effect caused by the distortions of the Maxwellian electron spectrum, and we show that evidence for acceleration of subrelativistic electrons can be derived from detailed spectral measurements.Comment: 14 pages, 11 figures, A&A in pres

    Buoyancy increase and drag-reduction through a simple superhydrophobic coating

    Get PDF
    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown that the low energy surface treatment decreased the adhesion of water molecules to the surface of the boat resulting in a reduction of the drag force. Additionally, a robust superhydrophobic surface was fabricated through layer-by-layer coating using adhesive double side tape and the paint, and after a 100 cm abrasion test with sand paper, the surface still retained its water repellency, enhanced buoyancy and drag reduction

    Photobactericidal activity activated by thiolated gold nanoclusters at low flux levels of white light

    Get PDF
    The emergence of antibiotic resistant bacteria is a major threat to the practice of modern medicine. Photobactericidal agents have obtained significant attention as promising candidates to kill bacteria, and they have been extensively studied. However, to obtain photobactericidal activity, an intense white light source or UV-activation is usually required. Here we report a photobactericidal polymer containing crystal violet (CV) and thiolated gold nanocluster ([Au25(Cys)18]) activated at a low flux levels of white light. It was shown that the polymer encapsulated with CV do not have photobactericidal activity under white light illumination of an average 312 lux. However, encapsulation of [Au25(Cys)18] and CV into the polymer activates potent photobactericidal activity. The study of the photobactericidal mechanism shows that additional encapsulation of [Au25(Cys)18] into the CV treated polymer promotes redox reactions through generation of alternative electron transfer pathways, while it reduces photochemical reaction type-ІІ pathways resulting in promotion of hydrogen peroxide (H2O2) production
    • 

    corecore