358 research outputs found

    Harvesting electrical energy using plasmon-enhanced light pressure in a platinum cut cone

    Get PDF
    We have designed a method of harvesting electrical energy using plasmon-enhanced light pressure. A device was fabricated as a cut cone structure that optimizes light collection so that the weak incident light pressure can be sufficiently enhanced inside the cut cone to generate electrical energy. An increase in the device's current output is a strong indication that the pressure of incident light has been enhanced by the surface plasmons on a platinum layer inside the cut cone. The electrical energy harvested in a few minutes by irradiating pulsed laser light on a single micro device was possible to illuminate a blue LED

    Epitheliotropic cutaneous lymphoma (mycosis fungoides) in a dog

    Get PDF
    A seven-year-old castrated male Yorkshire terrier dog was presented for a recurrent skin disease. Erythematous skin during the first visit progressed from multiple plaques to patch lesions and exudative erosion in the oral mucosa membrane. Biopsy samples were taken from erythematous skin and were diagnosed with epitheliotropic T cell cutaneous lymphoma by histopathology and immunochemical stain. In serum chemistry, the dog had a hypercalcemia (15.7 mg/dl) and mild increased alkaline phosphatase (417 U/l). Immunohistochemistry was performed to detect parathyroid hormone-related peptide (PTH-rP) in epitheliotropic cutaneous lymphoma tissues but the neoplastic cells were not labeled with anti-PTH-rP antibodies. The patient was treated with prednisolone and isotretinoin. However, the dog died unexpectedly

    Reappraisal of Plasmapheresis as a Supportive Measure in a Patient with Hepatic Failure after Major Hepatectomy

    Get PDF
    Major resection of cirrhotic livers can result in hepatic failure, but no supportive treatment has been found to be generally effective. We successfully treated a 63-year-old woman with post-hepatectomy liver failure with plasmapheresis. Following right hepatectomy, the initial postoperative recovery of liver function was favorable, except for ascites. One month later, however, the amount of drained ascites increased up to 2 l/day. In addition, serum cholesterol concentration gradually decreased to around 30 mg/dl, and serum total bilirubin rose to 11.1 mg/dl. Plasmapheresis was performed, and after just 2 sessions, serum cholesterol level was rapidly corrected and prothrombin time was restored. After 3 sessions of plasmapheresis, the usual rebound rise of serum bilirubin disappeared, and the amount of ascites drained also decreased slowly. The patient underwent a total of 5 sessions of plasmapheresis over 2 weeks, after which liver function improved slowly, and she was finally discharged 72 days after liver resection. Mild ascites requiring diuretic therapy persisted over 3 months. She is doing well to date 10 months after liver resection without tumor recurrence or hepatic decompensation. This limited experience suggests that plasmapheresis can be a useful liver support for post-hepatectomy liver failure

    Piezoelectric energy harvesting using solar radiation pressure enhanced by surface plasmons at visible to near-infrared wavelengths

    Get PDF
    A light-pressure electric generator (LPEG) device, which harvests piezoelectric energy using solar radiation enhanced by surface plasmons (SPs), is demonstrated. The design of the device is motivated by the need to drastically increase the power output of existing piezoelectric devices based on SP resonance. The solar radiation pressure can be used as an energy source by employing an indium tin oxide (ITO)/Ag double layer to excite the SPs in the near-infrared (NIR) and visible light regions. The LPEG with the ITO layer generates an open-circuit voltage of 295 mV, a short-circuit current of 3.78 μA, and a power of 532.3 μW cm−2 under a solar simulator. The power of the LPEG device incorporating the ITO layer increased by 38% compared to the device without the ITO layer. The effect of the ITO layer on the electrical output of the LPEG was analyzed in detail by measuring the electrical output when visible and NIR lights are incident on the device using optical bandpass filters. In addition, finite-difference time-domain simulation confirmed that the pressure of the incident light can be further amplified by the ITO/Ag double layer. Finally, the energy harvested from the LPEG was stored in capacitors to successfully illuminate red light-emitting diodes

    miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells

    Get PDF
    AbstractHuman mesenchymal stem cells (hMSCs) have self-renewal and differentiation capabilities but the regulatory mechanisms of MSC fate determination remain poorly understood. Here, we aimed to identify microRNAs enriched in hMSCs that modulate differentiation commitments. Microarray analysis revealed that miR-140-5p is commonly enriched in undifferentiated hMSCs from various tissue sources. Moreover, bioinformatic analysis and luciferase reporter assay validated that miR-140-5p directly represses bone morphogenic protein 2 (BMP2). Furthermore, blocking miR-140-5p in hMSCs increased the expression of BMP signaling components and critical regulators of osteogenic differentiation. We propose that miR-140-5p functionally inhibits osteogenic lineage commitment in undifferentiated hMSCs

    Room-temperature lasing from nanophotonic topological cavities

    Get PDF
    The study of topological phases of light underpins a promising paradigm for engineering disorder-immune compact photonic devices with unusual properties. Combined with an optical gain, topological photonic structures provide a novel platform for micro- and nanoscale lasers, which could benefit from nontrivial band topology and spatially localized gap states. Here, we propose and demonstrate experimentally active nanophotonic topological cavities incorporating III-V semiconductor quantum wells as a gain medium in the structure. We observe room-temperature lasing with a narrow spectrum, high coherence, and threshold behaviour. The emitted beam hosts a singularity encoded by a triade cavity mode that resides in the bandgap of two interfaced valley-Hall periodic photonic lattices with opposite parity breaking. Our findings make a step towards topologically controlled ultrasmall light sources with nontrivial radiation characteristics.This work was supported by the Australian Research Council (grants DE190100430 and DP200101168) and the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (grant 2018R1A3A3000666). A.T. and S.K. are indebted to Prof. Barry Luther-Davies for experimental support. Y.K. thanks Prof. Zhigang Chen for his invitation to write this paper as a part of the special issue

    MiR-9 Controls Chemotactic Activity of Cord Blood CD34⁺ Cells by Repressing CXCR4 Expression

    Get PDF
    Improved approaches for promoting umbilical cord blood (CB) hematopoietic stem cell (HSC) homing are clinically important to enhance engraftment of CB-HSCs. Clinical transplantation of CB-HSCs is used to treat a wide range of disorders. However, an improved understanding of HSC chemotaxis is needed for facilitation of the engraftment process. We found that ectopic overexpression of miR-9 and antisense-miR-9 respectively down- and up-regulated C-X-C chemokine receptor type 4 (CXCR4) expression in CB-CD34+ cells as well as in 293T and TF-1 cell lines. Since CXCR4 is a specific receptor for the stromal cell derived factor-1 (SDF-1) chemotactic factor, we investigated whether sense miR-9 and antisense miR-9 influenced CXCR4-mediated chemotactic mobility of primary CB CD34+ cells and TF-1 cells. Ectopic overexpression of sense miR-9 and antisense miR-9 respectively down- and up-regulated SDF-1-mediated chemotactic cell mobility. To our knowledge, this study is the first to report that miR-9 may play a role in regulating CXCR4 expression and SDF-1-mediated chemotactic activity of CB CD34+ cells

    Agreement on the Level Selection in Laminoplasty among Experienced Surgeons: A Survey-Based Study

    Get PDF
    Study DesignSurvey based study.PurposeTo assess the degree of agreement in level selection of laminoplasty (LP) for the selected cervical myeloradiculopathy cases between experienced spine surgeons.Overview of LiteratureAlthough, cervical LP is a widely used surgical technique for multi-level spinal cord compression, until now there is no consensus about how many segments or which segments should be opened to achieve a satisfactory decompression.MethodsThorough clinical and radiographic data (plain X-ray, computed tomography, and magnetic resonance imaging) of 30 patients who had cervical myelopathy were prepared. The data were provided to three independent spine surgeons with over 10 years experience in operation of their own practices. They were questioned about the most preferable surgical method and suitable decompression levels. The second survey was carried out after 6 months with the same cases. If the level difference between respondents was a half level or below, agreement was considered acceptable. The intraobserver and interobserver agreements in level selection were assessed by kappa statistics.ResultsThree respondents selected LP as an option for 6, 8, and 22 cases in the first survey and 10, 21, and 24 cases in the second survey. The reasons for selection of LP were levels of ossification of the posterior longitudinal ligament (p=0.004), segmental kyphotic deformity (p=0.036) and mean compression score (p=0.041). Intraobserver agreement showed variable results. Interobserver agreement was poor to fair by perfect matching (kappa=0.111–0.304) and fair to moderate by acceptable matching (kappa=0.308–0.625).ConclusionsThe degree of agreement for level selection of LP was not high even though experienced surgeons would choose the opening segments on the basis of same criteria. These results suggest that more specific guidelines in determination of levels for LP should be required to decrease unnecessary wide decompression according to individual variance

    Association of Moderate Hypothermia at Admission with Short-Term and Long-Term Outcomes in Extremely Low Birth Weight Infants

    Get PDF
    Purpose Extremely low birth weight (ELBW) infants exhibit immature thermoregulation and are easily exposed to hypothermia. We investigated the association between hypothermia on admission with short- and long-term outcomes. Methods Medical records of ELBW infants admitted to the neonatal intensive care unit of a tertiary medical center between June 2012 and February 2017 were retrospectively analyzed. Upon admission, the axillary body temperature was measured. Moderate hypothermia was defined as admission temperature below 36 ℃. Results A total of 208 infants with gestational age of 26.4±2.3 weeks and birth weight of 746.7±154.9 g were included. Admission temperature ranged from 33.5 to 36.8 ℃ (median 36.1 ℃). Univariate analyses of maternal and infant characteristics were performed for moderately hypothermic and control (normothermic to mildly hypothermic) infants. Lower gestational age, lower birth weight, and vaginal delivery correlated with moderate hypothermia. Logistic regression analyses adjusted for confounders revealed that the incidence of hemodynamically significant patent ductus arteriosus (hsPDA) was associated with moderate hypothermia in ELBW infants. Moreover, abnormal mental developmental index scores on the Bayley Scales of Infant Development II at a corrected age of 18 to 24 months were associated with moderate hypothermia, but not with the psychomotor developmental index, incidence of blindness, deafness, or cerebral palsy. Conclusion Moderate hypothermia at admission is not only correlated with short-term neonatal morbidities such as hsPDA, but may also be associated with long-term neurodevelopmental impairment in ELBW infants. Future large-scale studies are required to clarify the long-term consequences of hypothermia upon admission
    corecore