23,870 research outputs found

    Base manifolds for fibrations of projective irreducible symplectic manifolds

    Get PDF
    Given a projective irreducible symplectic manifold MM of dimension 2n2n, a projective manifold XX and a surjective holomorphic map f:MXf:M \to X with connected fibers of positive dimension, we prove that XX is biholomorphic to the projective space of dimension nn. The proof is obtained by exploiting two geometric structures at general points of XX: the affine structure arising from the action variables of the Lagrangian fibration ff and the structure defined by the variety of minimal rational tangents on the Fano manifold XX

    Conserved cosmological structures in the one-loop superstring effective action

    Get PDF
    A generic form of low-energy effective action of superstring theories with one-loop quantum correction is well known. Based on this action we derive the complete perturbation equations and general analytic solutions in the cosmological spacetime. Using the solutions we identify conserved quantities characterizing the perturbations: the amplitude of gravitational wave and the perturbed three-space curvature in the uniform-field gauge both in the large-scale limit, and the angular-momentum of rotational perturbation are conserved independently of changing gravity sector. Implications for calculating perturbation spectra generated in the inflation era based on the string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.

    The Minimum Wiener Connector

    Full text link
    The Wiener index of a graph is the sum of all pairwise shortest-path distances between its vertices. In this paper we study the novel problem of finding a minimum Wiener connector: given a connected graph G=(V,E)G=(V,E) and a set QVQ\subseteq V of query vertices, find a subgraph of GG that connects all query vertices and has minimum Wiener index. We show that The Minimum Wiener Connector admits a polynomial-time (albeit impractical) exact algorithm for the special case where the number of query vertices is bounded. We show that in general the problem is NP-hard, and has no PTAS unless P=NP\mathbf{P} = \mathbf{NP}. Our main contribution is a constant-factor approximation algorithm running in time O~(QE)\widetilde{O}(|Q||E|). A thorough experimentation on a large variety of real-world graphs confirms that our method returns smaller and denser solutions than other methods, and does so by adding to the query set QQ a small number of important vertices (i.e., vertices with high centrality).Comment: Published in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Dat

    A conserved variable in the perturbed hydrodynamic world model

    Full text link
    We introduce a scalar-type perturbation variable Φ\Phi which is conserved in the large-scale limit considering general sign of three-space curvature (KK), the cosmological constant (Λ\Lambda), and time varying equation of state. In a pressureless medium Φ\Phi is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.

    AJAE Appendix: Challenges to the Development of a Dedicated Energy Crop

    Get PDF
    The material contained herein is supplementary to the article named in the title and published in the American Journal of Agricultural Economics, Volume 89, Number 5, December 2007.Crop Production/Industries, Research and Development/Tech Change/Emerging Technologies,

    Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    Get PDF
    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger than about 18,000 km/s have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe Kalpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities larger than 18,000 km/s were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.Comment: 6 pages, 3 figures, submitted to ApJ Letter

    Quantum Gambling Using Three Nonorthogonal States

    Full text link
    We provide a quantum gambling protocol using three (symmetric) nonorthogonal states. The bias of the proposed protocol is less than that of previous ones, making it more practical. We show that the proposed scheme is secure against non-entanglement attacks. The security of the proposed scheme against entanglement attacks is shown heuristically.Comment: no essential correction, 4 pages, RevTe

    Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    Get PDF
    We report measurements of X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60% along the X-ray bright SE-NW axis from 0.84% +/- 0.06% per yr to 0.52% +/- 0.03% per yr. This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3, and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% +/- 0.4% per yr. We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as found at a wind termination shock, requiring strong mass loss in the progenitor. Alternatively, the reverse shock might have encountered an order-of-magnitude density discontinuity within the ejecta, such as found in pulsating delayed-detonation Type Ia models. We demonstrate that the blast wave is much more decelerated than the reverse shock in these models for remnants at ages similar to G1.9+0.3. Similar effects may also be produced by dense shells possibly associated with high-velocity features in Type Ia spectra. Accounting for the asymmetry of G1.9+0.3 will require more realistic 3D Type Ia models.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters, minor revision

    Evaluation of a Liquid Amine System for Spacecraft Carbon Dioxide Control

    Get PDF
    The analytical and experimental studies are described which were directed toward the acquisition of basic information on utilizing a liquid amine sorbent for in use in a CO2 removal system for manned spacecraft. Liquid amine systems are successfully used on submarines for control of CO2 generated by the crew, but liquid amines were not previously considered for spacecraft applications due to lack of development of satisfactory rotary phase separators. Developments in this area now make consideration of liquid amines practical for spacecraft system CO2 removal. The following major tasks were performed to evaluate liquid amine systems for spacecraft: (1) characterization, through testing, of the basic physical and thermodynamic properties of the amine solution; (2) determination of the dynamic characteristics of a cocurrent flow absorber; and (3) evaluation, synthesis, and selection of a liquid amine system concept oriented toward low power requirements. A low weight, low power system concept was developed. Numerical and graphical data are accompanied by pertinent observations
    corecore