15 research outputs found

    Hybrid Wi-Fi and PLC network for efficient e-health communication in hospitals: a prototype

    Get PDF
    E-health is being adapted in modern hospitals as a significant addition to the existing healthcare services. To this end, modern hospitals urgently require a mobile, high-capacity, secure, and cost-effective communication infrastructure. In this paper, we explore potential applications of a hybrid broadband power line communication (PLC) and Wi-Fi in an indoor hospital scenario. It utilizes the existing power line cables and Wi-Fi plug-and-play devices for indoor broadband communication. Broadband power line (BPL) adaptors with Wi-Fi outputs are used to build an access network in hospitals, particularly in areas where the wireless router signal is poor. The Tenda PH10 AV1,000 AC Wi-Fi power line adapter is a set of BPL adapters that offer operational bandwidth of up to 1,000 Mbps. These adapters are based on the HomePlug AV2 protocol and can provide a data rate up to 200 Mbps on the physical layer. An experiment using the PLC Wi-Fi kit is carried out to show that a Wi-Fi and PLC hybrid network is the best candidate to provide wide range of practical applications in a hospital including, but not limited to, telemedicine, electronic medical records, early-stage disease diagnosis, health management, real-time monitoring, and remote surgeries

    Development of a Graph-Based Collision Risk Situation Model for Validation of Autonomous Ships’ Collision Avoidance Systems

    No full text
    In the maritime industry, the systematic validation of collision avoidance systems of autonomous ships is becoming an increasingly important issue with the development of autonomous ships. The development of collision avoidance systems for autonomous ships faces inherent risks of programming errors and has mostly been tested in limited scenarios. Despite efforts to verify these systems through scenario testing, these scenarios do not fully represent the complex nature of real-world navigation, limiting full system verification and reliability. Therefore, this study proposed a method for analyzing collision risk situations extracted from AIS data through graph-based modeling and establishing validation scenarios. This methodology categorizes collision risk scenarios according to their centrality and frequency and demonstrates how simple collision risk situations gradually evolve into harsh situations

    Navigation Situation Clustering Model of Human-Operated Ships for Maritime Autonomous Surface Ship Collision Avoidance Tests

    No full text
    The collision avoidance system is one of the core systems of MASS (Maritime Autonomous Surface Ships). The collision avoidance system was validated using scenario-based experiments. However, the scenarios for the validation were designed based on COLREG (International Regulations for Preventing Collisions at Sea) or are arbitrary. Therefore, the purpose of this study is to identify and systematize objective navigation situation scenarios for the validation of autonomous ship collision avoidance algorithms. A data-driven approach was applied to collect 12-month Automatic Identification System data in the west sea of Korea, to extract the ship’s trajectory, and to hierarchically cluster the data according to navigation situations. Consequently, we obtained the hierarchy of navigation situations and the frequency of each navigation situation for ships that sailed the west coast of Korea during one year. The results are expected to be applied to develop a collision avoidance test environment for MASS

    Collision Risk Situation Clustering to Design Collision Avoidance Algorithms for Maritime Autonomous Surface Ships

    No full text
    The reliability of collision avoidance systems for Maritime Autonomous Surface Ships is one of the most critical factors for their safety. In particular, since many ship collisions occur in coastal areas, it is crucial to ensure the reliability of collision avoidance algorithms in geographically limited coastal waters. However, studies on maritime autonomous surface ships collision avoidance algorithms mainly focus on the traffic factor despite the importance of the geographic factor. Therefore, this study presents a methodology for establishing a practical collision avoidance system test bed, considering the geographic environment. The proposed methodology is a data-driven approach that objectively categorizes collision risk situations by extracting these risks using Automatic Identification System (AIS) and Electronic Navigational Chart (ENC) data, followed by clustering algorithms. Consequently, the research results present a direction for establishing test beds from the perspective of geographic and traffic factors

    Navigation Situation Clustering Model of Human-Operated Ships for Maritime Autonomous Surface Ship Collision Avoidance Tests

    No full text
    The collision avoidance system is one of the core systems of MASS (Maritime Autonomous Surface Ships). The collision avoidance system was validated using scenario-based experiments. However, the scenarios for the validation were designed based on COLREG (International Regulations for Preventing Collisions at Sea) or are arbitrary. Therefore, the purpose of this study is to identify and systematize objective navigation situation scenarios for the validation of autonomous ship collision avoidance algorithms. A data-driven approach was applied to collect 12-month Automatic Identification System data in the west sea of Korea, to extract the ship’s trajectory, and to hierarchically cluster the data according to navigation situations. Consequently, we obtained the hierarchy of navigation situations and the frequency of each navigation situation for ships that sailed the west coast of Korea during one year. The results are expected to be applied to develop a collision avoidance test environment for MASS

    Anomaly detection model of small-scaled ship for maritime autonomous surface ships’ operation

    No full text
    ABSTRACTAs the human’s role in the operation of maritime autonomous surface ships (MASSs) is concentrated on less manpower, several issues have been raised regarding the capacity of single manpower. This indicates the necessity of developing monitoring technology for abnormal navigational situations to prevent maritime accidents. Since boating under the influence (BUI) of alcohol is one of the major causes of maritime accidents in Korea, this study focused on BUI of alcohol as abnormal navigation to be monitored. The model suggests a methodology for detecting BUI ships based on their trajectory and behavior. The trajectory and behavior-related features are extracted using AIS and geographic information system datasets and clustered to the anomaly and normal navigation patterns. The proposed model can aid the decision-making of humans monitoring the MASS in detecting abnormal ships in the vicinity of MASSs

    A REM Update Methodology Based on Clustering and Random Forest

    No full text
    In this paper, we propose a radio environment map (REM) update methodology based on clustering and machine learning for indoor coverage. We use real measurements collected by the TurtleBot3 mobile robot using the received signal strength indicator (RSSI) as a measure of link quality between transmitter and receiver. We propose a practical framework for timely updates to the REM for dynamic wireless communication environments where we need to deal with variations in physical element distributions, environmental factors, movements of people and devices, and so on. In the proposed approach, we first rely on a historical dataset from the area of interest, which is used to determine the number of clusters via the K-means algorithm. Next, we divide the samples from the historical dataset into clusters, and we train one random forest (RF) model with the corresponding historical data from each cluster. Then, when new data measurements are collected, these new samples are assigned to one cluster for a timely update of the RF model. Simulation results validate the superior performance of the proposed scheme, compared with several well-known ML algorithms and a baseline scheme without clustering

    Radio Environment Map Construction Based on Privacy-Centric Federated Learning

    Get PDF
    In today’s digital age, coverage prediction is essential for optimizing wireless networks and improving user experience. While numerous path loss models and advanced machine learning algorithms have been developed to achieve high prediction performance, they predominantly operate within a centralized learning paradigm. While effective, this conventional approach often suffers from scalability and privacy limitations that are critical to the successful deployment of wireless maps. Conversely, in this paper, we propose a novel decentralized approach based on a federated learning long short-term memory (LSTM) model to accurately predict network coverage in indoor environments. The proposed FedLSTM is a method that allows multiple users, or clients, to train the model without sharing their personal data directly with a central server. In an experimental setup, we used real data collected from numerous clients moving along different paths. The FedLSTM model is evaluated in terms of root mean square error (RMSE), mean absolute error (MAE), and R2. Furthermore, compared to a centralized counterpart, FedLSTM shows a slight increase in RMSE from 2.4 dBm to 2.5 dBm and an increase in MAE from 1.7 dBm to 1.9 dBm. In addition, we evaluate the proposed FedLSTM considering variations in the number of participating clients and the number of local training epochs. The results show that even devices with limited computational power can meaningfully contribute to the training of the federated model, with fewer epochs achieving competitive results. Graphical analyses of the radio environment maps (REMs) generated by both FedLSTM and the centralized LSTM highlight their similarities. However, FedLSTM provides client privacy while reducing communication overhead and server strain

    Robust and scalable production of emulsion-templated microparticles in 3D-printed milli-fluidic device

    No full text
    Emulsions are ideal templates for preparation of functional microparticles in food, cosmetics, and pharmaceutics. However, the lack of a simple and robust platform that allows mass production of oil-in-water (O/W) emulsions has been considered as a practical hurdle for broader applicability of these emulsion-based technologies. Herein, we report a novel 3D-printed milli-fluidic device (3D-PMD) for robust and scalable production of water-in-oil (W/O) as well as O/W emulsions. By using an additive manufacturing method with one-step prototyping capability, 3D-PMD integrates an array of 40 drop-makers with a 3D void geometry and a flow distributor in a compact fashion, which has been difficult to achieve using conventional methods. Experimental results as well as the computational fluid dynamics simulation confirm the validity in the design of the drop-maker and the flow distributor, as well as the hydrophilic surface modification process for the robust and controllable production of poly(ethylene glycol) microgels and polycaprolactone microparticles, prepared from W/O and O/W emulsions, respectively. We anticipate that the simplicity, low-cost ($150/per device), facile manufacturability, and versatile emulsion production capability of our 3D-PMD method offers a unique route to produce W/O and O/W emulsions in a robust and in a scalable manner, providing new and exciting opportunities in various applications involving functional microparticles such as cosmetic products, optical displays, controlled reactions, and drug delivery systems to name a few. © 2021 Elsevier B.V.11Nsciescopu
    corecore