70 research outputs found

    Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells.</p> <p>Results</p> <p>We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles.</p> <p>Conclusion</p> <p>Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.</p

    A comprehensive dataset for home appliance control using ERP-based BCIs with the application of inter-subject transfer learning

    Get PDF
    Brain-computer interfaces (BCIs) have a potential to revolutionize human-computer interaction by enabling direct links between the brain and computer systems. Recent studies are increasingly focusing on practical applications of BCIs—e.g., home appliance control just by thoughts. One of the non-invasive BCIs using electroencephalography (EEG) capitalizes on event-related potentials (ERPs) in response to target stimuli and have shown promise in controlling home appliance. In this paper, we present a comprehensive dataset of online ERP-based BCIs for controlling various home appliances in diverse stimulus presentation environments. We collected online BCI data from a total of 84 subjects among whom 60 subjects controlled three types of appliances (TV: 30, door lock: 15, and electric light: 15) with 4 functions per appliance, 14 subjects controlled a Bluetooth speaker with 6 functions via an LCD monitor, and 10 subjects controlled air conditioner with 4 functions via augmented reality (AR). Using the dataset, we aimed to address the issue of inter-subject variability in ERPs by employing the transfer learning in two different approaches. The first approach, “within-paradigm transfer learning,” aimed to generalize the model within the same paradigm of stimulus presentation. The second approach, “cross-paradigm transfer learning,” involved extending the model from a 4-class LCD environment to different paradigms. The results demonstrated that transfer learning can effectively enhance the generalizability of BCIs based on ERP across different subjects and environments

    Two-dimensional layered hydroxide nanoporous nanohybrids pillared with zero-dimensional polyoxovanadate nanoclusters for enhanced water oxidation catalysis

    Get PDF
    The oxygen‐evolution reaction (OER) is critical in electrochemical water splitting and requires an efficient, sustainable, and cheap catalyst for successful practical applications. A common development strategy for OER catalysts is to search for facile routes for the synthesis of new catalytic materials with optimized chemical compositions and structures. Here, nickel hydroxide Ni(OH)2 2D nanosheets pillared with 0D polyoxovanadate (POV) nanoclusters as an OER catalyst that can operate in alkaline media are reported. The intercalation of POV nanoclusters into Ni(OH)2 induces the formation of a nanoporous layer‐by‐layer stacking architecture of 2D Ni(OH)2 nanosheets and 0D POV with a tunable chemical composition. The nanohybrid catalysts remarkably enhance the OER activity of pristine Ni(OH)2. The present findings demonstrate that the intercalation of 0D POV nanoclusters into Ni(OH)2 is effective for improving water oxidation catalysis and represents a potential method to synthesize novel, porous hydroxide‐based nanohybrid materials with superior electrochemical activities

    Dual-Functional CeO<sub>2</sub>:Eu<sup>3+</sup> Nanocrystals for Performance-Enhanced Dye-Sensitized Solar Cells

    No full text
    Single-crystalline, octahedral CeO<sub>2</sub>:Eu<sup>3+</sup> nanocrystals, successfully prepared using a simple hydrothermal method, were investigated to determine their photovoltaic properties in an effort to enhance the light-harvesting efficiency of dye-sensitized solar cells (DSSCs). The size of the CeO<sub>2</sub>:Eu<sup>3+</sup> nanocrystals (300–400 nm), as well as their mirrorlike facets, significantly improved the diffuse reflectance of visible light. Excitation of the CeO<sub>2</sub>:Eu<sup>3+</sup> nanocrystal with 330 nm ultraviolet light was re-emitted via downconversion photoluminescence (PL) from 570 to 672 nm, corresponding to the <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>J</sub> transition in the Eu<sup>3+</sup> ions. Downconversion PL was dominant at 590 nm and had a maximum intensity for 1 mol % Eu<sup>3+</sup>. The CeO<sub>2</sub>:Eu<sup>3+</sup> nanocrystal-based DSSCs exhibited a power conversion efficiency of 8.36%, an increase of 14%, compared with conventional TiO<sub>2</sub> nanoparticle-based DSSCs, because of the strong light-scattering and downconversion PL of the CeO<sub>2</sub>:Eu<sup>3+</sup> nanocrystals

    Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches

    No full text
    Background Synthetic biological circuits are widely utilized to control microbial cell functions. Natural and synthetic riboswitches are attractive sensor modules for use in synthetic biology applications. However, tuning the fold-change of riboswitch circuits is challenging because a deep understanding of the riboswitch mechanism and screening of mutant libraries is generally required. Therefore, novel molecular parts and strategies for straightforward tuning of the fold-change of riboswitch circuits are needed. Results In this study, we devised a toehold switch-based modulator approach that combines a hybrid input construct consisting of a riboswitch and transcriptional repressor and de-novo-designed riboregulators named toehold switches. First, the introduction of a pair of toehold switches and triggers as a downstream signal-processing module to the hybrid input for coenzyme B-12 resulted in a functional riboswitch circuit. Next, several optimization strategies that focused on balancing the expression levels of the RNA components greatly improved the fold-change from 260- to 887-fold depending on the promoter and host strain. Further characterizations confirmed low leakiness and high orthogonality of five toehold switch pairs, indicating the broad applicability of this strategy to riboswitch tuning. Conclusions The toehold switch-based modulator substantially improved the fold-change compared to the previous sensors with only the hybrid input construct. The programmable RNA-RNA interactions amenable to in silico design and optimization can facilitate further development of RNA-based genetic modulators for flexible tuning of riboswitch circuitry and synthetic biosensors.11Ysciescopu

    Finite Element-Based Simulation for Edgewise Compression Behavior of Corrugated Paperboard for Packaging of Agricultural Products

    No full text
    Since most goods are transported and stored in a unit-load form in today&rsquo;s global supply chain, there has been a growing concern regarding the compression strength of corrugated paperboard boxes for packaging of agricultural products. The best predictor of the compression strength of corrugated boxes is the edgewise compression test (ECT) value; therefore, its efficient measurement or prediction is crucial for the design of more efficient corrugated boxes for food and agricultural and industrial products. This study investigated the edgewise compression behavior (load vs. displacement plot, ECT, and failure mechanism) of corrugated paperboard based on different types of testing standards and flute types using finite element analysis (FEA) and experimental analysis. The results of this study showed that the magnitude of the ECT values produced by the FEA was different from the values produced by the experiment. The difference in the ECT can be possibly explained by layer thickness approximations, together with glue line width assumptions between fluting and the liners in the numerical models. However, the trends of the values were the same. If the material properties of corrugated paperboard components and modeling methods of the corrugated paperboard are further studied, the FE (finite element)-based simulation technique will be a useful alternative tool that can replace the edgewise compression test
    corecore