296 research outputs found

    Updated Analysis of a_1 and a_2 in Hadronic Two-body Decays of B Mesons

    Full text link
    Using the recent experimental data of BD()(π,ρ)B\to D^{(*)}(\pi,\rho), BD()Ds()B\to D^{(*)} D_s^{(*)}, BJ/ψK()B\to J/\psi K^{(*)} and various model calculations on form factors, we re-analyze the effective coefficients a_1 and a_2 and their ratio. QCD and electroweak penguin corrections to a_1 from BD()Ds()B\to D^{(*)}D_s^{(*)} and a_2 from BJ/ψK()B\to J/\psi K^{(*)} are estimated. In addition to the model-dependent determination, the effective coefficient a_1 is also extracted in a model-independent way as the decay modes BD()hB\to D^{(*)}h are related by factorization to the measured semileptonic distribution of BD()νˉB\to D^{(*)}\ell \bar\nu at q2=mh2q^2=m_h^2. Moreover, this enables us to extract model-independent heavy-to-heavy form factors, for example, F0BD(mπ2)=0.66±0.06±0.05F_0^{BD}(m_\pi^2)=0.66\pm0.06\pm0.05 and A0BD(mπ2)=0.56±0.03±0.04A_0^{BD^*}(m_\pi^2)=0.56\pm0.03\pm0.04. The determination of the magnitude of a_2 from BJ/ψK()B\to J/\psi K^{(*)} depends on the form factors F1BKF_1^{BK}, A1,2BKA_{1,2}^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi}. By requiring that a_2 be process insensitive (i.e., the value of a_2 extracted from J/ψKJ/\psi K and J/ψKJ/\psi K^* states should be similar), as implied by the factorization hypothesis, we find that BK()B\to K^{(*)} form factors are severely constrained; they respect the relation F1BK(mJ/ψ2)1.9A1BK(mJ/ψ2)F_1^{BK}(m^2_{J/\psi})\approx 1.9 A_1^{BK^*}(m^2_{J/\psi}). Form factors A2BKA_2^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi} inferred from the measurements of the longitudinal polarization fraction and the P-wave component in BJ/ψKB\to J/\psi K^* are obtained. A stringent upper limit on a_2 is derived from the current bound on \ov B^0\to D^0\pi^0 and it is sensitive to final-state interactions.Comment: 33 pages, 2 figures. Typos in Tables I and IX are corrected. To appear in Phys. Rev.

    B -> J/psi K^* Decays in QCD Factorization

    Full text link
    The hadronic decay B -> J K^* is analyzed within the framework of QCD factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the transversity basis and their relative phases are studied using various different form-factor models for B-K^* transition. The effective parameters a_2^h for helicity h=0,+,- states receive different nonfactorizable contributions and hence they are helicity dependent, contrary to naive factorization where a_2^h are universal and polarization independent. QCD factorization breaks down even at the twist-2 level for transverse hard spectator interactions. Although a nontrivial strong phase for the A_\parallel amplitude can be achieved by adjusting the phase of an infrared divergent contribution, the present QCD factorization calculation cannot say anything definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3 corrections and is not large enough to account for the observed branching ratio and the fraction of longitudinal polarization. Possible enhancement mechanisms for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos correcte

    Light-Front Approach for Heavy Pentaquark Transitions

    Full text link
    Assuming the two diquark structure for the pentaquark state as advocated in the Jaffe-Wilczek model, there exist exotic parity-even anti-sextet and parity-odd triplet heavy pentaquark baryons. The theoretical estimate of charmed and bottom pentaquark masses is quite controversial and it is not clear whether the ground-state heavy pentaquark lies above or below the strong-decay threshold. We study the weak transitions of heavy pentaquark states using the light-front quark model. In the heavy quark limit, heavy-to-heavy pentaquark transition form factors can be expressed in terms of three Isgur-Wise functions: two of them are found to be normalized to unity at zero recoil, while the third one is equal to 1/2 at the maximum momentum transfer, in accordance with the prediction of the large-Nc approach or the quark model. Therefore, the light-front model calculations are consistent with the requirement of heavy quark symmetry. Numerical results for form factors and Isgur-Wise functions are presented. Decay rates of the weak decays Theta_b+ to Theta_c0 pi+ (rho+), Theta_c0 to Theta+ pi- (rho-), Sigma'_{5b}+ to Sigma'_{5c}0 pi+ (rho+) and Sigma'_{5c}0 to N_8+ pi- (rho-) with Theta_Q, Sigma'_{5Q} and N_8 being the heavy anti-sextet, heavy triplet and light octet pentaquarks, respectively, are obtained. For weakly decaying Theta_b+ and Theta_c0, the branching ratios of Theta_b+ to Theta_c0 pi+, Theta_c0 to Theta+ pi- are estimated to be at the level of 10^{-3} and a few percents, respectively.Comment: 33 pages, 3 figures, version to be published in Phys. Rev.

    Thorn-like TiO2 nanoarrays with broad spectrum antimicrobial activity through physical puncture and photocatalytic action

    Get PDF
    To overcome the conventional limitation of TiO2 disinfection being ineffective under light-free conditions, TiO2 nanowire films (TNWs) were prepared and applied to bacterial disinfection under dark and UV illumination. TNW exhibited much higher antibacterial efficiencies against Escherichia coli (E. coli) under dark and UV illumination conditions compared to TiO2 nanoparticle film (TNP) which was almost inactive in the dark, highlighting the additional contribution of the physical interaction between bacterial membrane and NWs. Such a physical contact-based antibacterial activity was related to the NW geometry such as diameter, length, and density. The combined role of physical puncture and photocatalytic action in the mechanism underlying higher bactericidal effect of TNW was systematically examined by TEM, SEM, FTIR, XPS, and potassium ion release analyses. Moreover, TNW revealed antimicrobial activities in a broad spectrum of microorganisms including Staphylococcus aureus and MS2 bacteriophage, antibiofilm properties, and good material stability. Overall, we expect that the free-standing and antimicrobial TNW is a promising agent for water disinfection and biomedical applications in the dark and/or UV illumination.11Ysciescopu

    Vertex functions for d-wave mesons in the light-front approach

    Full text link
    While the light-front quark model (LFQM) is employed to calculate hadronic transition matrix elements, the vertex functions must be pre-determined. In this work we derive the vertex functions for all d-wave states in this model. Especially, since both of 3D1^3D_1 and 3S1^3S_1 are 11^{--} mesons, the Lorentz structures of their vertex functions are the same. Thus when one needs to study the processes where 3D1^3D_1 is involved, all the corresponding formulas for 3S1^3S_1 states can be directly applied, only the coefficient of the vertex function should be replaced by that for 3D1^3D_1. The results would be useful for studying the newly observed resonances which are supposed to be d-wave mesons and furthermore the possible 2S-1D mixing in ψ\psi' with the LFQM.Comment: 12 pages, 2 figures, some typos corrected and more discussions added. Accepted by EPJ

    Signatures of Electronic Nematic Phase at Isotropic-Nematic Phase Transition

    Full text link
    The electronic nematic phase occurs when the point-group symmetry of the lattice structure is broken, due to electron-electron interactions. We study a model for the nematic phase on a square lattice with emphasis on the phase transition between isotropic and nematic phases within mean field theory. We find the transition to be first order, with dramatic changes in the Fermi surface topology accompanying the transition. Furthermore, we study the conductivity tensor and Hall constant as probes of the nematic phase and its transition. The relevance of our findings to Hall resistivity experiments in the high-TcT_c cuprates is discussed.Comment: 5 pages, 3 figure

    Temperature Dependence of Hall Response in Doped Antiferromagnets

    Full text link
    Using finite-temperature Lanczos method the frequency-dependent Hall response is calculated numerically for the t-J model on the square lattice and on ladders. At low doping, both the high-frequency RH* and the d.c. Hall coefficient RH0 follow qualitatively similar behavior at higher temperatures: being hole-like for T > Ts~1.5J and weakly electron-like for T < Ts. Consistent with experiments on cuprates, RH0 changes, in contrast to RH*, again to the hole-like sign below the pseudogap temperature T*, revealing a strong temperature variation for T->0.Comment: LaTeX, 4 pages, 4 figures, submitted to PR

    Radiative transitions among the vector and scalar heavy quarkonium states with covariant light-front quark model

    Full text link
    In this article, we study the radiative transitions among the vector and scalar heavy quarkonium states with the covariant light-front quark model. In calculations, we observe that the radiative decay widths are sensitive to the constituent quark masses and the shape parameters of the wave-functions, and reproduce the experimental data with suitable parameters.Comment: 11 pages, 7 figure

    Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films

    Full text link
    We report the discovery of mesoscale regions with distinctive magnetic properties in epitaxial La1x_{1-x}Srx_{x}MnO3_{3} films which exhibit tunneling-like magnetoresistance across grain boundaries. By using temperature-dependent magnetic force microscopy we observe that the mesoscale regions are formed near the grain boundaries and have a different Curie temperature (up to 20 K {\it higher}) than the grain interiors. Our images provide direct evidence for previous speculations that the grain boundaries in thin films are not magnetically and electronically sharp interfaces. The size of the mesoscale regions varies with temperature and nature of the underlying defect.Comment: 4 pages of text, 4 figure

    Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}

    Full text link
    In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR) are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals with various carrier concentrations, from underdope to overdope. Our crystals show the highest T_c (33 K) and the smallest residual resistivity ever reported for Bi-2201 at optimum doping. It is found that the temperature dependence of the Hall angle obeys a power law T^n with n systematically decreasing with increasing doping, which questions the universality of the Fermi-liquid-like T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab} shows a good T-linear behavior. The systematics of the MR indicates an increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure
    corecore