506 research outputs found

    Wandering globular clusters: the first dwarf galaxies in the universe?

    Full text link
    In the last decade we witness an advent of new types of dwarf stellar systems in cluding ultra-compact dwarfs, ultra-faint dwarf spheroidals, and exotic globular clusters, breaking the old simple paradigm for dwarf galaxies and globular clusters. These objects become more intriguing, and understanding of these new findings be comes more challenging. Recently we discovered a new type of large scale structure in the Virgo cluster of galaxies: it is composed of globular clusters. Globular clusters in Virgo are found wandering between galaxies (intracluster globular clusters) as well as in galaxies. These intracluster globular clusters fill a significant fraction in the area of the Virgo cluster and they are dominated by blue globular clusters. These intracluster globular clusters may be closely related with the first dwarf galaxies in the universe.Comment: 6 pages, 3 figures, Conference Proceedings: "A Universe of Dwarf Galaxies", 14-18 June 2010, Lyon, Franc

    Superior pre-osteoblast cell response of etched ultrafine-grained titanium with a controlled crystallographic orientation

    Get PDF
    Ultrafine-grained (UFG) Ti for improved mechanical performance as well as its surface modification enhancing biofunctions has attracted much attention in medical industries. Most of the studies on the surface etching of metallic biomaterials have focused on surface topography and wettability but not crystallographic orientation, i.e., texture, which influences the chemical as well as the physical properties. In this paper, the influences of texture and grain size on roughness, wettability, and pre-osteoblast cell response were investigated in vitro after HF etching treatment. The surface characteristics and cell behaviors of ultrafine, fine, and coarse-grained Ti were examined after the HF etching. The surface roughness during the etching treatment was significantly increased as the orientation angle from the basal pole was increased. The cell adhesion tendency of the rough surface was promoted. The UFG Ti substrate exhibited a higher texture energy state, rougher surface, enhanced hydrophilic wettability, and better cell adhesion and proliferation behaviors after etching than those of the coarse- and fine-grained Ti substrates. These results provide a new route for enhancing both mechanical and biological performances using etching after grain refinement of Ti. ? The Author(s) 2017.115Ysciescopu

    Dissolution in a field

    Full text link
    We study the dissolution of a solid by continuous injection of reactive ``acid'' particles at a single point, with the reactive particles undergoing biased diffusion in the dissolved region. When acid encounters the substrate material, both an acid particle and a unit of the material disappear. We find that the lengths of the dissolved cavity parallel and perpendicular to the bias grow as t^{2/(d+1)} and t^{1/(d+1)}, respectively, in d-dimensions, while the number of reactive particles within the cavity grows as t^{2/(d+1)}. We also obtain the exact density profile of the reactive particles and the relation between this profile and the motion of the dissolution boundary. The extension to variable acid strength is also discussed.Comment: 6 pages, 6 figures, 2-column format, for submission to PR

    Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation

    Get PDF
    Condensed liquid behavior on hydrophobic micro/nano-structured surfaces is a subject with multiple practical applications, but remains poorly understood. In particular, the loss of superhydrophobicity of hydrophobic micro/nanostructures during condensation, even when the same surface shows water-repellant characteristics when exposed to air, requires intensive investigation to improve and apply our understanding of the fundamental physics of condensation. Here, we postulate the criterion required for condensation to form from inside the surface structures by examining the grand potentials of a condensation system, including the properties of the condensed liquid and the conditions required for condensation. The results imply that the same hydrophobic micro/nano-structured surface could exhibit different liquid droplet behavior depending on the conditions. Our findings are supported by the observed phenomena: the initiation of a condensed droplet from inside a hydrophobic cavity, the apparent wetted state changes, and the presence of sticky condensed droplets on the hydrophobic micro/nano-structured surface. © 2015, Macmillan Publishers Limited. All rights reserved.open111616Nsciescopu

    Rotating Circular Strings, and Infinite Non-Uniqueness of Black Rings

    Full text link
    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings.Comment: 31 pages, 7 figures. v2: minor changes, added reference. v3: erroneous values of T_{ww} (eq.(3.39)) and n_p (eq.(5.20)) corrected, and accompanying discussion amended. In the journal version these corrections appear as an appended erratum. No major changes involve

    A boundary value problem for the five-dimensional stationary rotating black holes

    Full text link
    We study the boundary value problem for the stationary rotating black hole solutions to the five-dimensional vacuum Einstein equation. Assuming the two commuting rotational symmetry and the sphericity of the horizon topology, we show that the black hole is uniquely characterized by the mass, and a pair of the angular momenta.Comment: 16 pages, no figure

    Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube

    Full text link
    We have studied the afterpulse of a hemispherical photomultiplier tube for an upcoming reactor neutrino experiment. The timing, the amplitude, and the rate of the afterpulse for a 10 inch photomultiplier tube were measured with a 400 MHz FADC up to 16 \ms time window after the initial signal generated by an LED light pulse. The time and amplitude correlation of the afterpulse shows several distinctive groups. We describe the dependencies of the afterpulse on the applied high voltage and the amplitude of the main light pulse. The present data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure

    Grain boundary effects on magnetotransport in bi-epitaxial films of La0.7_{0.7}Sr0.3_{0.3}MnO3_3

    Full text link
    The low field magnetotransport of La0.7_{0.7}Sr0.3_{0.3}MnO3_3 (LSMO) films grown on SrTiO3_3 substrates has been investigated. A high qualtity LSMO film exhibits anisotropic magnetoresistance (AMR) and a peak in the magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films prepared using a seed layer of MgO and a buffer layer of CeO2_2 display a resistance dominated by grain boundaries. One film was prepared with seed and buffer layers intact, while a second sample was prepared as a 2D square array of grain boundaries. These films exhibit i) a low temperature tail in the low field magnetoresistance; ii) a magnetoconductance with a constant high field slope; and iii) a comparably large AMR effect. A model based on a two-step tunneling process, including spin-flip tunneling, is discussed and shown to be consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format (zdf1.jpg); the eps was huge. Accepted to Phys. Rev.

    Itinerant ferromagnetism in half-metallic CoS_2

    Full text link
    We have investigated electronic and magnetic properties of the pyrite-type CoS_2 using the linearized muffin-tin orbital (LMTO) band method. We have obtained the ferromagnetic ground state with nearly half-metallic nature. The half-metallic stability is studied by using the fixed spin moment method. The non-negligible orbital magnetic moment of Co 3d electrons is obtained as μL=0.06μB\mu_L = 0.06 \mu_B in the local spin density approximation (LSDA). The calculated ratio of the orbital to spin angular momenta / = 0.15 is consistent with experiment. The effect of the Coulomb correlation between Co 3d electrons is also explored with the LSDA + U method. The Coulomb correlation at Co sites is not so large, U1U \lesssim 1 eV, and so CoS_2 is possibly categorized as an itinerant ferromagnet. It is found that the observed electronic and magnetic behaviors of CoS_2 can be described better by the LSDA than by the LSDA + U.Comment: 4 pages, 3 postscript figure

    Spatial infinity in higher dimensional spacetimes

    Full text link
    Motivated by recent studies on the uniqueness or non-uniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes(n4n \geq 4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the non-trivial Weyl tensor {}^{(n-1)}C_{abcd} in general. We also address static spacetime and its multipole moments P_{a_1 a_2 ... a_s}. Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed a multipole moments in static vacuum spacetimes. For example, we will consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of static vacuum solution we need some additional information, at least, the Weyl tensor {}^{(n-2)}C_{abcd} at spatial infinity.Comment: 6 pages, accepted for publication in Physical Review D, published versio
    corecore