1,356 research outputs found

    Yield and Production Costs for Three Potential Dedicated Energy Crops in Mississippi and Oklahoma Environments

    Get PDF
    The objective of this paper is to determine production costs of switchgrass, eastern gammagrass, and giant miscanthus using Mississippi and Oklahoma data. Production costs were computed using a standard enterprise budgeting approach by species and method of harvest. Results indicate cost difference across species and method of harvest.Yield and Cost, biomass species, Crop Production/Industries, Resource /Energy Economics and Policy,

    Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

    Get PDF
    We propose a scheme to implement a single-mode quantum filter, which selectively eliminates the one-photon state in a quantum state α0>+β1>+γ2>\alpha|0>+\beta|1>+\gamma|2>. The vacuum state and the two photon state are transmitted without any change. This scheme requires single-photon sources, linear optical elements and photon detectors. Furthermore we demonstrate, how this filter can be used to realize a two-qubit projective measurement and to generate multi-photon polarization entangled states.Comment: revision submitted to PR

    Hot Carrier Transport and Photocurrent Response in Graphene

    Full text link
    Strong electron-electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.Comment: 4 pgs, 2 fg

    Short‐wave infrared light imaging measures tissue moisture and distinguishes superficial from deep burns

    Full text link
    Existing clinical approaches and tools to measure burn tissue destruction are limited resulting in misdiagnosis of injury depth in over 40% of cases. Thus, our objective in this study was to characterize the ability of short‐wave infrared (SWIR) imaging to detect moisture levels as a surrogate for tissue viability with resolution to differentiate between burns of various depths. To accomplish our aim, we constructed an imaging system consisting of a broad‐band Tungsten light source; 1,200‐, 1,650‐, 1,940‐, and 2,250‐nm wavelength filters; and a specialized SWIR camera. We initially used agar slabs to provide a baseline spectrum for SWIR light imaging and demonstrated the differential absorbance at the multiple wavelengths, with 1,940 nm being the highest absorbed wavelength. These spectral bands were then demonstrated to detect levels of moisture in inorganic and in vivo mice models. The multiwavelength SWIR imaging approach was used to diagnose depth of burns using an in vivo porcine burn model. Healthy and injured skin regions were imaged 72 hours after short (20 seconds) and long (60 seconds) burn application, and biopsies were extracted from those regions for histologic analysis. Burn depth analysis based on collagen coagulation histology confirmed the formation of superficial and deep burns. SWIR multispectral reflectance imaging showed enhanced intensity levels in long burned regions, which correlated with histology and distinguished between superficial and deep burns. This SWIR imaging method represents a novel, real‐time method to objectively distinguishing superficial from deep burns.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154351/1/wrr12779_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154351/2/wrr12779.pd

    Association of leukocyte telomere length with mortality among adult participants in 3 longitudinal studies

    Get PDF
    Importance: Leukocyte telomere length (LTL) is a trait associated with risk of cardiovascular disease and cancer, the 2 major disease categories that largely define longevity in the United States. However, it remains unclear whether LTL is associated with the human life span. Objective: To examine whether LTL is associated with the life span of contemporary humans. Design, Setting, and Participants: This cohort study included 3259 adults of European ancestry from the Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and Women's Health Initiative (WHI). Leukocyte telomere length was measured in 1992 and 1997 in the CHS, from 1995 to 1998 in the FHS, and from 1993 to 1998 in the WHI. Data analysis was conducted from February 2017 to December 2019. Main Outcomes and Measures: Death and LTL, measured by Southern blots of the terminal restriction fragments, were the main outcomes. Cause of death was adjudicated by end point committees. Results: The analyzed sample included 3259 participants (2342 [71.9%] women), with a median (range) age of 69.0 (50.0-98.0) years at blood collection. The median (range) follow-up until death was 10.9 (0.2-23.0) years in CHS, 19.7 (3.4-23.0) years in FHS, and 16.6 (0.5-20.0) years in WHI. During follow-up, there were 1525 deaths (482 [31.6%] of cardiovascular disease; 373 [24.5%] of cancer, and 670 [43.9%] of other or unknown causes). Short LTL, expressed in residual LTL, was associated with increased mortality risk. Overall, the hazard ratio for all-cause mortality for a 1-kilobase decrease in LTL was 1.34 (95% CI, 1.21-1.47). This association was stronger for noncancer causes of death (cardiovascular death: hazard ratio, 1.28; 95% CI, 1.08-1.52; cancer: hazard ratio, 1.13; 95% CI, 0.93-1.36; and other causes: hazard ratio, 1.53; 95% CI, 1.32-1.77). Conclusions and Relevance: The results of this study indicate that LTL is associated with a natural life span limit in contemporary humans

    Measuring V_ub and probing SUSY with double ratios of purely leptonic decays of B and D mesons

    Get PDF
    The experimental prospects for precise measurements of the leptonic decays B_u -> tau nu / mu nu, B_s -> mu+ mu-, D -> mu nu and D_s -> mu nu / tau nu are very promising. Double ratios involving four of these decays can be defined in which the dependence on the values of the decay constants is essentially eliminated, thus enabling complementary measurements of the CKM matrix element V_ub with a small theoretical error. We quantify the experimental error in a possible future measurement of |V_ub| using this approach, and show that it is competitive with the anticipated precision from the conventional approaches. Moreover, it is shown that such double ratios can be more effective than the individual leptonic decays as a probe of the parameter space of supersymmetric models. We emphasize that the double ratios have the advantage of using |V_ub| as an input parameter (for which there is experimental information), while the individual decays have an uncertainty from the decay constants (e.g. f_B_s), and hence a reliance on theoretical techniques such as lattice QCD.Comment: 21 pages, 4 figure

    Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8(+) T cells

    Get PDF
    Depletion of immune elements before adoptive cell transfer (ACT) can dramatically improve the antitumor efficacy of transferred CD8(+) T cells, but the specific mechanisms that contribute to this enhanced immunity remain poorly defined. Elimination of CD4(+)CD25(+) regulatory T (T reg) cells has been proposed as a key mechanism by which lymphodepletion augments ACT-based immunotherapy. We found that even in the genetic absence of T reg cells, a nonmyeloablative regimen substantially augmented CD8(+) T cell reactivity to self-tissue and tumor. Surprisingly, enhanced antitumor efficacy and autoimmunity was caused by increased function rather than increased numbers of tumor-reactive T cells, as would be expected by homeostatic mechanisms. The γ (C) cytokines IL-7 and IL-15 were required for augmenting T cell functionality and antitumor activity. Removal of γ (C) cytokine–responsive endogenous cells using antibody or genetic means resulted in the enhanced antitumor responses similar to those seen after nonmyeloablative conditioning. These data indicate that lymphodepletion removes endogenous cellular elements that act as sinks for cytokines that are capable of augmenting the activity of self/tumor-reactive CD8(+) T cells. Thus, the restricted availability of homeostatic cytokines can be a contributing factor to peripheral tolerance, as well as a limiting resource for the effectiveness of tumor-specific T cells
    corecore