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Abstract

IMPORTANCE Leukocyte telomere length (LTL) is a trait associated with risk of cardiovascular
disease and cancer, the 2 major disease categories that largely define longevity in the United States.
However, it remains unclear whether LTL is associated with the human life span.

OBJECTIVE To examine whether LTL is associated with the life span of contemporary humans.

DESIGN, SETTING, AND PARTICIPANTS This cohort study included 3259 adults of European
ancestry from the Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and Women’s
Health Initiative (WHI). Leukocyte telomere length was measured in 1992 and 1997 in the CHS, from
1995 to 1998 in the FHS, and from 1993 to 1998 in the WHI. Data analysis was conducted from
February 2017 to December 2019.

MAIN OUTCOMES AND MEASURES Death and LTL, measured by Southern blots of the terminal
restriction fragments, were the main outcomes. Cause of death was adjudicated by end point
committees.

RESULTS The analyzed sample included 3259 participants (2342 [71.9%] women), with a median
(range) age of 69.0 (50.0-98.0) years at blood collection. The median (range) follow-up until death
was 10.9 (0.2-23.0) years in CHS, 19.7 (3.4-23.0) years in FHS, and 16.6 (0.5-20.0) years in WHI.
During follow-up, there were 1525 deaths (482 [31.6%] of cardiovascular disease; 373 [24.5%] of
cancer, and 670 [43.9%] of other or unknown causes). Short LTL, expressed in residual LTL, was
associated with increased mortality risk. Overall, the hazard ratio for all-cause mortality for a
1-kilobase decrease in LTL was 1.34 (95% CI, 1.21-1.47). This association was stronger for noncancer
causes of death (cardiovascular death: hazard ratio, 1.28; 95% CI, 1.08-1.52; cancer: hazard ratio, 1.13;
95% CI, 0.93-1.36; and other causes: hazard ratio, 1.53; 95% CI, 1.32-1.77).

CONCLUSIONS AND RELEVANCE The results of this study indicate that LTL is associated with a
natural life span limit in contemporary humans.

JAMA Network Open. 2020;3(2):e200023. doi:10.1001/jamanetworkopen.2020.0023

Introduction

The debate on the natural life span limit in humans has focused on demographic trends1-5 rather than
on biological factors that set a ceiling for life span. We hypothesized that leukocyte telomere length
(LTL) might be a biological driver of life span because LTL is associated with increased mortality
among older individuals6-10 and converging evidence infers a causal role of LTL in aging-related
diseases that often result in death.11-15

Key Points
Question Is leukocyte telomere length

associated with the natural life span of

contemporary humans?

Findings This cohort study included

3259 participants from 3 longitudinal
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noncancer causes increased as
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at death.
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with a life span limit among

contemporary humans.
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The view that LTL plays a causal role in aging-related diseases draws on the following findings.
First, LTL variation across individuals as well as some underlying determinants of LTL variation,
including high heritability and sex, are similar in newborns and adults.16 Second, individuals who
enter adult life with short or long LTL are likely to have short or long LTL, respectively, throughout
their remaining life course.17,18 Therefore, having comparatively short or long LTL is principally
determined early in life, typically decades before disease onset and mortality. Third, genome-wide
association studies have identified LTL-associated single-nucleotide polymorphisms mapped to
several regions that harbor telomere maintenance genes.11,19,20 These single-nucleotide
polymorphisms have been used to develop genetic risk scores that show an inverse association of
LTL with cardiovascular disease (CVD)11-13,21 and direct associations with some cancers.12,14,15,21 Such
genetic findings largely exclude reverse causality, ie, that CVD might shorten LTL or some cancers
might lengthen LTL. Jointly, these findings suggest that LTL is likely causal for CVD and some cancers,
perhaps increasing the mortality risk that arises from these diseases. In addition, based on empirical
and theoretical considerations, our previous work showed that a subset of the general population
may reach a critically short LTL, a so-called telomeric brink, at an age younger than life expectancy,
which denotes a high risk of death in the near term.22 The questions are whether LTL is associated
with the life span of some individuals and which diseases (ie, CVD, cancer, and other causes [OCs])
might influence such an association. To this end, we leveraged LTL and mortality data from 3
longitudinal studies in the United States.

Methods

Sample
Participants of European ancestry with LTL measurements from the Cardiovascular Health Study
(CHS),23 the Framingham Heart Study (FHS),24 and the Women’s Health Initiative (WHI)25 were
included (eTable 1 in the Supplement). Self-reported race/ethnicity in CHS and WHI was used to
select the subsample of participants of European ancestry in these studies. Participants in FHS are
almost exclusively self-reported to be of European ancestry. In CHS, LTL was measured in years 5 and
10 (ie, 1992 and 1997); in FHS, at exam 6 (ie, 1995-1998); and in WHI, at exam 1 (ie, 1993-1998). No
variables used in the analyses (ie, sex, age at LTL measurement, age at death or censoring, indicators
of death events, or LTL) had missing values. Cause of death was adjudicated by end point committees
of the respective studies. The CHS used historical data on morbidities, hospitalizations, and
medications along with medical records (ie, most recent hospitalization) and proxy interviewers (ie,
to ascertain circumstances). These data were sent to the Morbidity and Mortality Committees, which
were made up of study physicians from each site, to adjudicate cause of death. The FHS collected
detailed information on underlying causes of death (ie, from cardiovascular causes, cancer, other
noncardiovascular or noncancer causes, or unknown), performing a comprehensive review of all
available medical records by a physician-review, panel-based adjudication process established
decades ago. In WHI, mortality events were identified using annual mailings and follow-up (ie, proxy
questionnaires, returned mailings) and National Death Index searches. Cause of death was
ascertained from death certificates and National Death Index searches by a committee of physician
adjudicators.

This study was approved by institutional review board of Rutgers University, the State
University of New Jersey. The study performed secondary analyses. No new data were collected
from study participants in the course of working on this article. In the original studies, DNA was
collected from participants who provided informed consent for genetic research. Study procedures,
including obtaining informed consent from study participants, are described in respective
publications.23-25 This report follows the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline for cohort studies. Data for this study were analyzed from
February 2017 to December 2019.
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LTL Measurements
Measurements were performed at a baseline examination by Southern blot of the terminal restriction
fragments.26 The interassay coefficients of variation were 2.4%, 1.5%, and 2.0% for the FHS, CHS,
and WHI, respectively. In the CHS, 963 individuals had LTL measurements from blood samples
obtained in year 5. Among those, 612 (63.6%) had a second measurement in year 10. In the analyses
reported in this paper, we used the second LTL measurement for the latter group and the first (and
only) LTL measurement for the remaining 351 individuals in the analyzed CHS sample. We also
performed sensitivity analyses including only the 612 individuals with 2 LTL measurements. These
showed qualitatively similar results; therefore, they are not reported here.

Statistical Analysis
We used t tests for comparisons between the LTL of women and men as well as between the LTL of
those who died and those who were alive at the end of follow-up. For the former, we used the age-
and study-adjusted LTL computed as follows: we regressed LTL on age and study (ie, as a categorical
variable with 3 levels, 1 for each study) and added residuals from this regression to the mean LTL
across all individuals in the sample. For the latter, we added the residual LTL (rLTL) to the mean LTL
across all individuals in the sample. The rLTL was computed as the residuals from linear regressions of
LTL on age, fitted separately among women and men in each of the 3 studies. We also fitted the
regressions with quadratic terms for age, but these were nonsignificant in all cases; therefore, we
proceeded with the linear model. The same values (with added mean LTL in the entire sample) were
used in computations of LTL for individuals who died from cancer and noncancerous causes and
those alive at the end of follow-up. We also computed the Pearson correlation coefficient between
age at blood draw and sex- and study-adjusted LTL (calculated as the residuals from the regression of
LTL on sex and the study variable, added to the mean LTL across all individuals in the sample).

We fitted Cox proportional hazards models using follow-up data on mortality in the combined
sample. Time since blood draw was used as the time variable. The most parsimonious model included
sex and rLTL as covariates. We used 2 flexible specifications to include age in the model: 1 with a
natural spline basis for age and another with age included as a linear term, stratified by baseline age,
thus allowing for different baseline hazards in each age strata. Both methods showed similar results
for the association of rLTL with mortality. In this article, we report results for the model with splines.
The results for the second approach appear in eTable 3, eTable 5, eTable 10, eFigure 1, eFigure 2,
eFigures 5 to 7, and eFigure 9 in the Supplement. For technical details and a description of sensitivity
analyses, see the eAppendix in the Supplement.

We analyzed data on cause-specific mortality in the competing risks context using the cause-
specific hazards functions approach.27 We used the same model specifications as in the all-cause
mortality analyses and estimated respective regression parameters for different cause-specific
hazards functions (ie, CVD, OC, and cancer). We report results for the model with splines in the
Results section; the results for the second approach appear in eTable 3, eTable 5, eTables 11 to 13,
eFigure 1, eFigure 2, eFigure 7, and eFigure 9 in the Supplement. For technical details and description
of sensitivity analyses, see the eAppendix in the Supplement.

Statistical analyses with the Cox proportional hazards models and the competing risks models
were performed in R version 3.6.1 using the survival package (R Project for Statistical Computing).
Figures were prepared in MATLAB R2019a (MathWorks) and in R version 3.6.1. Statistical significance
was set at P < .05, and all tests were 2-tailed.

Results

The initial sample consisted of 3434 individuals (2439 [68.4%] women and 995 [31.6%] men) of
European ancestry, with median (range) age at blood collection of 68.0 (33.0-98.0) years, median
(range) age at death of 83.0 (51.0-105.0) years, and a mean (SD) follow-up period of 15.2 (5.4) years
(eTable 1 in the Supplement). The median (range) follow-up periods for death events were 10.9
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(0.2-23.0) years in CHS, 19.7 (3.4-23.0) years in FHS, and 16.6 (0.5-20.0) years in WHI. We excluded
175 individuals younger than 50 years at the time of blood draw because there were only 13 deaths
during follow-up among this subsample (1 [7.7%] of CVD; 3 [23.1%] of OC; 9 [69.2%] of cancer). The
analyzed sample included 3259 participants (2342 women [71.9%] and 917 [28.1%] men), with a
median (range) age of 69.0 (50.0-98.0) years at the time of blood collection. Participants were
followed up until death or were censored at the termination of follow-up for a mean (range) period
of 15.0 (0.2-23.0) years. Among eligible participants, 1525 (46.8%) died during the follow-up (482
[31.6%] of CVD; 373 [24.5%] of cancer; and 670 [43.9%] of OCs) (Table).

Sex- and study-adjusted LTL was inversely correlated with age (r = −0.20; P < .001; slope [SE],
−0.012 [0.001]). Men had shorter mean (SD) age- and study-adjusted LTL than women (6.58 [0.51]
kilobase [kb] vs 6.69 [0.56] kb; P < .001). Age-, sex-, and study-adjusted LTL vs follow-up time after
blood draw is displayed in Figure 1A. Participants who survived to the end of follow-up showed a
significantly longer median LTL compared with those who died from noncancer causes but compared

Table. Descriptive Statistics for the Sample Used in Analyses

Characteristic

No. (%)

CHS (n = 963) FHS (n = 1069) WHI (n = 1227) Total (N = 3259)
Age, median (range), y 77.0 (66.0-98.0) 60.0 (50.0-86.0) 67.0 (50.0-79.0) 69.0 (50.0-98.0)

Age at death, median (range), y 89.0 (74.0-105.0) 78.6 (54.0-102.0) 82.2 (52.0-98.0) 83.5 (52.0-105.0)

Follow-up period, mean (SD), y 11.2 (5.9) 18.1 (4.2) 15.3 (3.8) 15.0 (5.4)

Women 573 (59.5) 542 (50.7) 1227 (100) 2342 (71.9)

Did not die during follow-up 116 (12.0) 725 (67.8) 893 (72.8) 1734 (53.2)

Died during follow-up 847 (88.0) 344 (32.2) 334 (27.2) 1525 (46.8)

CVD 292 (30.3) 81 (7.6) 109 (8.9) 482 (14.8)

OC 412 (42.8) 146 (13.7) 112 (9.1) 670 (20.6)

Cancer 143 (14.8) 117 (10.9) 113 (9.2) 373 (11.4)

Aged 50-60 y 0 3 (0.3) 3 (0.2) 6 (0.2)

Aged 61-70 y 0 39 (3.6) 43 (3.5) 82 (2.5)

Aged 71-80 y 71 (7.4) 113 (10.6) 114 (9.3) 298 (9.1)

Aged >80 y 776 (80.6) 189 (17.7) 174 (14.2) 1139 (34.9)

Abbreviations: CHS, the Cardiovascular Health Study;
CVD, cardiovascular disease; FHS, the Framingham
Heart Study; OC, other causes (ie, not cancer or CVD);
WHI, Women’s Health Initiative.

Figure 1. Leukocyte Telomere Length (LTL) and Mortality
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with those who died from cancer (alive: 6.69 kb; 95% CI, 6.66-6.72 kb; cancer-related death: 6.61 kb;
95% CI, 6.55-6.67 kb; noncancer-related death: 6.59 kb; 95% CI, 6.56-6.62 kb) (Figure 1B).

Figure 2 displays the hazards of death from all causes, CVD, OCs, and cancer among individuals
of different ages and with different values of rLTL, scaled to an individual aged 50 years with the
expected (ie, mean) value of LTL for that age (ie, rLTL of 0). Figure 3 shows the respective hazards
of death from different causes at specific ages for different values of rLTLs. At age 60 years, HRs
were higher for an individual with −1.0 kb rLTL compared with an individual with 0 kb rLTL (all-cause
mortality: 3.8 [95% CI, 3.2-4.6] vs 2.9 [95% CI, 2.4-3.4]; CVD mortality: 5.1 [95% CI, 3.5-7.3] vs 4.0
[95% CI, 2.9-5.5]; OC mortality: 7.1 [95% CI, 5.1-9.7] vs 4.6 [95% CI, 3.5-6.1]). At age 80 years, HRs
were higher for an individual with −1.0 kb rLTL compared with an individual with 0 kb rLTL (all-cause
mortality: 57.7 [95% CI, 43.5-76.7] vs 43.2 [95% CI, 33.2-56.2]; CVD mortality: 125.5 [95% CI, 69.6-
226.3] vs 98.3 [95% CI, 56.2-171.9]; OC mortality: 192.6 [95% CI, 115.5-321.3] vs 125.9 [95% CI, 77.5-
204.4]) (eTables 6-8 in the Supplement).

However, we observed minimal association of LTL with cancer mortality (Figure 2D; eTable 9 in
the Supplement). At age 60 years, an individual with 0 kb rLTL had an HR of 1.5 (95% CI, 1.2-2.0),
while an individual with −1.0 kb rLTL had an HR of 1.7 (95% CI, 1.3-2.4). At age 80 years, an individual
with 0 kb rLTL had an HR of 7.0 (95% CI, 4.6-10.4), while an individual with −1.0 kb rLTL had an HR
of 7.8 (95% CI, 5.0-12.4).

Figure 2. Hazard Ratios for All-Cause and Cause-Specific Mortality for Different Residual Leukocyte Telomere Lengths (LTLs)
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For this reason, we repeated analyses excluding all cancer-related mortality. The sample for this
analysis contained 2886 individuals, ie, all individuals in the sample used in analyses shown in
Figure 2 and Figure 3, excluding 373 individuals who died of cancer during the follow-up period
(eFigures 3-6 in the Supplement). At age 60 years, an individual with 0 kb rLTL had an HR of 5.0
(95% CI, 4.1-6.2), while an individual with −1.0 kb rLTL had an HR of 7.0 (95% CI, 5.5-9.0). At age 80
years, an individual with 0 kb rLTL had an HR of 147.8 (95% CI, 102.6-213.1), while an individual with
−1.0 kb rLTL had an HR of 207.9 (95% CI, 141.3-306.0).

We also performed analyses in separate samples (ie, CHS, FHS, WHI) (eAppendix, eTable 4, and
eTable 5 in the Supplement). Figure 4 shows the HRs for a 1-kb decrease in rLTL for each study
individually and jointly (all-cause mortality in CHS: HR, 1.31; 95% CI, 1.16-1.49; FHS: 1.42; 95% CI, 1.15-
1.76; WHI: 1.33; 95% CI, 1.10-1.61; joint: HR, 1.34; 95% CI, 1.21-1.47). All HRs displayed the same
direction in all 3 studies as in the joint analyses, except for the HR for cancer in WHI, which showed
the opposite direction as the other studies (cancer mortality in CHS: HR, 1.43; 95% CI, 1.05-1.95; FHS:
1.20; 95% CI, 0.84-1.71; WHI: HR, 0.82; 95% CI, 0.60-1.14; joint: HR, 1.13; 95% CI, 0.93-1.36). The joint
HR for CVD mortality was 1.28 (95% CI, 1.08-1.52) and, for OC mortality, 1.53 (95% CI, 1.32-1.77).
Similar observations also held for an alternative modeling with age strata (eFigure 7 in the
Supplement).

Figure 3. Hazard Ratios for All-Cause and Cause-Specific Mortality at Different Ages
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Given that different studies had different durations of follow-up (Table), we repeated all
calculations, truncating follow-up at 15 years (ie, approximately the mean follow-up in the sample).
All results were similar to those presented in the text (eFigure 8 and eFigure 9 in the Supplement).

We found evidence of selection among individuals older than 80 years (variances in the groups
aged <80 years vs �80 years: 0.40 and 0.29; Levene test for equality of variances for the groups:
P < .001) (eFigure 10 in the Supplement). This selection is likely owing in part to the earlier deaths
among individuals who died from cancer, given that the median age at death from cancer in the
analyzed sample was younger than the median age of death from CVD or OCs (81.0 years vs 86.6
years; Kruskal-Wallis test for equality of medians in these groups: P < .001), in line with findings in the
general US population.28,29 Consistent with this premise, rLTLs for individuals who died of cancer at
ages younger than 80 years were longer than the rLTLs for those who died of noncancer causes at
the same age (6.65 kb vs 6.51 kb; P = .02).

Figure 4. Hazard Ratios (HRs) for Residual Leukocyte Telomere Length in Different Studies and Joint Analysis
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The figure displays HRs for a 1-kilobase decrease in
LTL, estimated in respective models, applied to
separate studies and joint analyses. Squares indicate
the effect sizes for each study, with lines representing
the 95% CIs. Estimates for joint analyses and their
95% CIs are represented by diamonds. CHS indicates
the Cardiovascular Health Study; CVD, cardiovascular
disease; FHS, the Framingham Heart Study, OC, other
cause; and WHI, the Women’s Health Initiative.
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Models in which age was included as a linear term, stratified by baseline age, allowed for
different baseline hazards in each age strata. These had similar results as the main analysis
(eAppendix, eTables 2-5, eFigure 1, and eFigure 2 in the Supplement).

Discussion

The debate among demographers on the natural life span limit in humans detracts from a more
persistent question about biological factors that may determine such a limit. The potential roles of
these factors must be considered in the context of specific causes of death. This study showed that
short LTL was associated with increased mortality risk as individuals approached the upper boundary
of their longevity, a phenomenon principally associated with mortality from noncancer causes.

In absolute terms, the HRs associated with short LTL rapidly escalated as an individual’s age
approached 90 years. Simply stated, an LTL-associated increased mortality risk from 100 to 150 in an
individual approaching the upper boundary of the human life span is not akin to an LTL-associated
increased mortality risk from 1.0 to 1.5 at a much younger age. Ultimately, the estimates from the
models (ie, parameters or corresponding HRs) translate to the estimates of survival probabilities (or
probabilities of death) for individuals with different rLTLs at different ages. At younger ages, the
mortality risk is low (ie, the survival probabilities are close to 1) such that the resulting change in
survival probabilities would not be substantial. However, at older ages, the mortality risk is much
higher by itself (ie, the survival probabilities are small and approach 0 as age increases). This means
that survival chances associated with shorter LTLs among older individuals are dramatically lower for
the same relative increase in the risk of death as at younger ages. While an individual with an rLTL of
0 kb at age 85 years might have a small but still noticeable survival probability, for an individual aged
85 years with shorter rLTL (eg, −1 kb), such probability might become considerably smaller. This
concept might hold not only for LTL but also for other aging-related phenotypes, whose presumed
association with survival probability increases in absolute terms as individuals approach the
boundary of the human life span.

Given common misclassifications of cause of death based on death certificates,30,31 accurate
determination of the cause of death was critical for our conclusion that LTL was more strongly
associated with death from noncancer causes than death from cancer. That said, death among the
older individuals, even when carefully adjudicated, is often not a consequence of a single disease. For
instance, stroke or myocardial infarction may occur in different clinical settings among individuals
who have multiple health problems (eg, frailty, loss of ambulation due to a fall, diabetes, dementia,
infection, etc) that collectively contribute to the individual’s death. Regardless of these specific
circumstances, it is clear that having comparatively short LTL was associated with increased mortality
risk from noncancer causes (ie, CVD and OCs).

Regarding the minimal association of LTL with cancer mortality, we note that, whereas
comparatively long LTL32-34 and alleles associated with a long LTL12,14,15 have been reported to be
associated with increased risk of several cancers, short LTL has been reported to be associated with
diminished survival among patients with some but not all cancers.35-38 Hence, the association of LTL
with cancer mortality is complex and contextual; it may reflect opposing telomere-related elements
that modify cancer risk, outcome of cancer treatment, and survival.

Limitations
This study has limitations. Our findings are based on individuals of European ancestry who reside in
the United States. These results therefore need replication in other groups and geographic locations,
given that there is some evidence that the association of LTL with mortality might be influenced by
ethnicity.25 In addition, our analyses did not adjust for key risk factors that are associated with
mortality risk (eg, hypertension, dyslipidemia, diabetes, smoking, obesity) or for comorbidities that
may have been present at baseline and also contributed to mortality (eg, CVD and cancer).
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Conclusions

In this study, comparatively short LTL was associated with an increased risk of dying from noncancer
causes in absolute terms among individuals as they approached the upper boundary of human
longevity. Further research is needed to assess whether a causal relationship exists and to determine
the contribution of LTL to the natural life span limit in contemporary humans.
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