13 research outputs found
Modulation of the Metabiome by Rifaximin in Patients with Cirrhosis and Minimal Hepatic Encephalopathy
Hepatic encephalopathy (HE) represents a dysfunctional gut-liver-brain axis in cirrhosis which can negatively impact outcomes. This altered gut-brain relationship has been treated using gut-selective antibiotics such as rifaximin, that improve cognitive function in HE, especially its subclinical form, minimal HE (MHE). However, the precise mechanism of the action of rifaximin in MHE is unclear. We hypothesized that modulation of gut microbiota and their end-products by rifaximin would affect the gut-brain axis and improve cognitive performance in cirrhosis. Aim To perform a systems biology analysis of the microbiome, metabolome and cognitive change after rifaximin in MHE. Methods
Twenty cirrhotics with MHE underwent cognitive testing, endotoxin analysis, urine/serum metabolomics (GC and LC-MS) and fecal microbiome assessment (multi-tagged pyrosequencing) at baseline and 8 weeks post-rifaximin 550 mg BID. Changes in cognition, endotoxin, serum/urine metabolites (and microbiome were analyzed using recommended systems biology techniques. Specifically, correlation networks between microbiota and metabolome were analyzed before and after rifaximin. Results
There was a significant improvement in cognition(six of seven tests improved,pVeillonellaceaeand increase inEubacteriaceae was observed. Rifaximin resulted in a significant reduction in network connectivity and clustering on the correlation networks. The networks centered onEnterobacteriaceae, Porphyromonadaceae and Bacteroidaceae indicated a shift from pathogenic to beneficial metabolite linkages and better cognition while those centered on autochthonous taxa remained similar. Conclusions
Rifaximin is associated with improved cognitive function and endotoxemia in MHE, which is accompanied by alteration of gut bacterial linkages with metabolites without significant change in microbial abundance. Trial Registration
ClinicalTrials.gov NCT0106913
svmPRAT: SVM-based Protein Residue Annotation Toolkit
<p>Abstract</p> <p>Background</p> <p>Over the last decade several prediction methods have been developed for determining the structural and functional properties of individual protein residues using sequence and sequence-derived information. Most of these methods are based on support vector machines as they provide accurate and generalizable prediction models.</p> <p>Results</p> <p>We present a general purpose protein residue annotation toolkit (<it>svm</it><monospace>PRAT</monospace>) to allow biologists to formulate residue-wise prediction problems. <it>svm</it><monospace>PRAT</monospace> formulates the annotation problem as a classification or regression problem using support vector machines. One of the key features of <it>svm</it><monospace>PRAT</monospace> is its ease of use in incorporating any user-provided information in the form of feature matrices. For every residue <it>svm</it><monospace>PRAT</monospace> captures local information around the reside to create fixed length feature vectors. <it>svm</it><monospace>PRAT</monospace> implements accurate and fast kernel functions, and also introduces a flexible window-based encoding scheme that accurately captures signals and pattern for training effective predictive models.</p> <p>Conclusions</p> <p>In this work we evaluate <it>svm</it><monospace>PRAT</monospace> on several classification and regression problems including disorder prediction, residue-wise contact order estimation, DNA-binding site prediction, and local structure alphabet prediction. <it>svm</it><monospace>PRAT</monospace> has also been used for the development of state-of-the-art transmembrane helix prediction method called TOPTMH, and secondary structure prediction method called YASSPP. This toolkit developed provides practitioners an efficient and easy-to-use tool for a wide variety of annotation problems.</p> <p><it>Availability</it>: <url>http://www.cs.gmu.edu/~mlbio/svmprat</url></p
Solid-Phase Microextraction and the Human Fecal VOC Metabolome
The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein
Building multiclass classifiers for remote homology detection and fold recognition
BACKGROUND: Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems. RESULTS: We present a comprehensive evaluation of a number of methods for building SVM-based multiclass classification schemes in the context of the SCOP protein classification. These methods include schemes that directly build an SVM-based multiclass model, schemes that employ a second-level learning approach to combine the predictions generated by a set of binary SVM-based classifiers, and schemes that build and combine binary classifiers for various levels of the SCOP hierarchy beyond those defining the target classes. CONCLUSION: Analyzing the performance achieved by the different approaches on four different datasets we show that most of the proposed multiclass SVM-based classification approaches are quite effective in solving the remote homology prediction and fold recognition problems and that the schemes that use predictions from binary models constructed for ancestral categories within the SCOP hierarchy tend to not only lead to lower error rates but also reduce the number of errors in which a superfamily is assigned to an entirely different fold and a fold is predicted as being from a different SCOP class. Our results also show that the limited size of the training data makes it hard to learn complex second-level models, and that models of moderate complexity lead to consistently better results
Exploring county-level spatio-temporal patterns in opioid overdose related emergency department visits.
Opioid overdoses within the United States continue to rise and have been negatively impacting the social and economic status of the country. In order to effectively allocate resources and identify policy solutions to reduce the number of overdoses, it is important to understand the geographical differences in opioid overdose rates and their causes. In this study, we utilized data on emergency department opioid overdose (EDOOD) visits to explore the county-level spatio-temporal distribution of opioid overdose rates within the state of Virginia and their association with aggregate socio-ecological factors. The analyses were performed using a combination of techniques including Moran's I and multilevel modeling. Using data from 2016-2021, we found that Virginia counties had notable differences in their EDOOD visit rates with significant neighborhood-level associations: many counties in the southwestern region were consistently identified as the hotspots (areas with a higher concentration of EDOOD visits) whereas many counties in the northern region were consistently identified as the coldspots (areas with a lower concentration of EDOOD visits). In most Virginia counties, EDOOD visit rates declined from 2017 to 2018. In more recent years (since 2019), the visit rates showed an increasing trend. The multilevel modeling revealed that the change in clinical care factors (i.e., access to care and quality of care) and socio-economic factors (i.e., levels of education, employment, income, family and social support, and community safety) were significantly associated with the change in the EDOOD visit rates. The findings from this study have the potential to assist policymakers in proper resource planning thereby improving health outcomes
Univariate serum metabolomic analysis.
<p>There was a significant increase in fatty acids and intermediates of carbohydrate metabolism after rifaximin therapy in the serum.</p
Subset of correlation differences before and after rifaximin.
<p>This figure is limited to the metabolomics and clinical/cognitive features that changed with rifaximin and their interaction with the bacterial taxa. The linkages that significantly changed in nature (positive to negative or vice-versa) or intensity (less to more or vice-versa while remaining positive or negative) with p<0.05 are shown. Nodes: Blue: bacterial taxa, green: serum metabolites, Yellow: cognitive or clinical data. Linkages were dark blue if correlations were positive before and changed significantly to negative, light blue if they changed significantly but remained positive throughout, red if correlations were negative at baseline but changed to positive after therapy and green is negative relationship throughout but a significant change.</p
Correlation networks before and after rifaximin.
<p><u>Legend common for </u><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0060042#pone-0060042-g004" target="_blank"><u>figures 4A, 4B and 4C</u>:</a> The complex correlation network represented parameters that were linked with a correlation coefficient >0.6 (negative or positive) and with a p value <0.05. Red nodes represent bacterial taxa, green ones the serum metabolites, yellow nodes indicate urinary metabolites while blue ones indicate clinical parameters. Red edges represent negative correlation between connected nodes and blue edges indicate positive correlations. <u>A</u>: Correlation network before rifaximin (BCN) with r>0.6 or <−0.6 and p<0.001. <u>B</u>: Correlation network after rifaximin (ACN) with r>0.6 or <−0.6 and p<0.001. <u>C</u>: is the intersection of 5A and B. It demonstrates those nodes and correlations that remain exactly same before and after rifaximin. <u>D:</u> Cumulative Degree Function curve. This graph plots the cumulative degree function of the node frequency distributions before and after rifaximin. It shows that after rifaximin therapy there was a significant reduction in network complexity (p<0.0001). Blue line: before and red line: after rifaximin. <u>E</u>: Correlation difference before and after rifaximin. This figure shows the correlations that significantly changed between the before and after rifaximin state; i.e. if two nodes were connected positively in the before rifaximin network but aftr rifaximin changed to negative, they are represented here. While the color coding of the nodes is similar, red edges demonstrate linkages that were positive in the BCN but became negative in ACN, while blue edges represent correlations that changed from negative to positive after the use of rifaximin.</p