24 research outputs found

    A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression

    Get PDF
    Genome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes. Fine-mapping and conditional analyses of proinsulin levels of 8,635 non-diabetic individuals from the METSIM study support a single association signal represented by a cluster of 16 strongly associated (p < 10−17) variants in high linkage disequilibrium (r2 > 0.8) with the GWAS index SNP rs7172432. These variants reside in an evolutionarily and functionally conserved islet and β cell stretch or super enhancer; the most strongly associated variant (rs7163757, p = 3 × 10−19) overlaps a conserved islet open chromatin site. DNA sequence containing the rs7163757 risk allele displayed 2-fold higher enhancer activity than the non-risk allele in reporter assays (p < 0.01) and was differentially bound by β cell nuclear extract proteins. Transcription factor NFAT specifically potentiated risk-allele enhancer activity and altered patterns of nuclear protein binding to the risk allele in vitro, suggesting that it could be a factor mediating risk-allele effects. Finally, the rs7163757 proinsulin-raising and T2D risk allele (C) was associated with increased expression of C2CD4B, and possibly C2CD4A, both of which were induced by inflammatory cytokines, in human islets. Together, these data suggest that rs7163757 contributes to genetic risk of islet dysfunction and T2D by increasing NFAT-mediated islet enhancer activity and modulating C2CD4B, and possibly C2CD4A, expression in (patho)physiologic states

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study

    Get PDF
    Comprehensivemetabolite profiling capturesmany highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serumamino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6million genotyped and imputed variants in 8545 nondiabetic Finnishmen fromtheMETabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966).We identified five novel loci associated with amino acid levels (P = &lt; 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579,minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboringmissense variants ofMAF &lt; 1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017,MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447,MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend &lt; 0.001). These novel signals provide further insight into the molecularmechanisms of amino acidmetabolismand potentially, their perturbations in disease

    Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations

    Get PDF
    Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice

    Requirements for an artificial intervertebral disc

    No full text
    Intervertebral disc degeneration is an important social and economical problem. Presently available artificial intervertebral discs (AIDs) are insufficient and the main surgical intervention is still spinal fusion. The objective of the present study is to present a list of requirements for the development of an AID which could replace the human lumbar intervertebral disc and restores its function. The list addresses geometry, stiffness, range of motion, strength, facet joint function, center of rotation, fixation, failsafety and implantation technique. Date are obtained from literature, quantified where possible and checked for consistency. Existing AIDs are evaluated according to the presented list of requirements. Endplate size is a weak point in existing AIDs. These should be large and fit vertebral bodies to prevent migration. Disc height and wedge angle should be restored, unless this would overstretch ligaments. Finally, stiffness and range of motion in all directions should equal those of the healthy disc, except for the axial rotation to relieve the facet joints

    Requirements for an artificial intervertebral disc

    No full text
    Intervertebral disc degeneration is an important social and economical problem. Presently available artificial intervertebral discs (AIDs) are insufficient and the main surgical intervention is still spinal fusion. The objective of the present study is to present a list of requirements for the development of an AID which could replace the human lumbar intervertebral disc and restores its function. The list addresses geometry, stiffness, range of motion, strength, facet joint function, center of rotation, fixation, failsafety and implantation technique. Date are obtained from literature, quantified where possible and checked for consistency. Existing AIDs are evaluated according to the presented list of requirements. Endplate size is a weak point in existing AIDs. These should be large and fit vertebral bodies to prevent migration. Disc height and wedge angle should be restored, unless this would overstretch ligaments. Finally, stiffness and range of motion in all directions should equal those of the healthy disc, except for the axial rotation to relieve the facet joints

    Familial Aggregation of Pure Tone Hearing Thresholds in an Aging European Population

    No full text
    OBJECTIVE: To investigate the familial correlations and intraclass correlation of age-related hearing impairment (ARHI) in specific frequencies. In addition, heritability estimates were calculated. STUDY DESIGN: Multicenter survey in 8 European centers. SUBJECTS: One hundred ninety-eight families consisting of 952 family members, screened by otologic examination and structured interviews. Subjects with general conditions, known to affect hearing thresholds or known otologic cause were excluded from the study. RESULTS: We detected familial correlation coefficients of 0.36, 0.37, 0.36, and 0.30 for 0.25, 0.5, 1, and 2 kHz, respectively, and correlation coefficients of 0.20 and 0.18 for 4 and 8 kHz, respectively. Variance components analyses showed that the proportion of the total variance attributable to family differences was between 0.32 and 0.40 for 0.25, 0.5, 1, and 2 kHz and below 0.20 for 4 and 8 kHz. When testing for homogeneity between sib pair types, we observed a larger familial correlation between female than male subjects. Heritability estimates ranged between 0.79 and 0.36 across the frequencies. DISCUSSION: Our results indicate that there is a substantial shared familial effect in ARHI. We found that familial aggregation of ARHI is markedly higher in the low frequencies and that there is a trend toward higher familial aggregation in female compared with male subjects

    Occupational noise, smoking, and a high body mass index are risk factors for age-related hearing impairment and moderate alcohol consumption is protective: A European population-based multicenter study

    No full text
    A multicenter study was set up to elucidate the environmental and medical risk factors contributing to age-related hearing impairment (ARHI). Nine subsamples, collected by nine audiological centers across Europe, added up to a total of 4,083 subjects between 53 and 67 years. Audiometric data (pure-tone average [PTA]) were collected and the participants filled out a questionnaire on environmental risk factors and medical history. People with a history of disease that could affect hearing were excluded. PTAs were adjusted for age and sex and tested for association with exposure to risk factors. Noise exposure was associated with a significant loss of hearing at high sound frequencies (>1 kHz). Smoking significantly increased high-frequency hearing loss, and the effect was dose-dependent. The effect of smoking remained significant when accounting for cardiovascular disease events. Taller people had better hearing on average with a more pronounced effect at low sound frequencies (<2 kHz). A high body mass index (BMI) correlated with hearing loss across the frequency range tested. Moderate alcohol consumption was inversely correlated with hearing loss. Significant associations were found in the high as well as in the low frequencies. The results suggest that a healthy lifestyle can protect against age-related hearing impairment
    corecore