103 research outputs found
CNS Delivery Via Adsorptive Transcytosis
Adsorptive-mediated transcytosis (AMT) provides a means for brain delivery of medicines across the blood-brain barrier (BBB). The BBB is readily equipped for the AMT process: it provides both the potential for binding and uptake of cationic molecules to the luminal surface of endothelial cells, and then for exocytosis at the abluminal surface. The transcytotic pathways present at the BBB and its morphological and enzymatic properties provide the means for movement of the molecules through the endothelial cytoplasm. AMT-based drug delivery to the brain was performed using cationic proteins and cell-penetrating peptides (CPPs). Protein cationization using either synthetic or natural polyamines is discussed and some examples of diamine/polyamine modified proteins that cross BBB are described. Two main families of CPPs belonging to the Tat-derived peptides and Syn-B vectors have been extensively used in CPP vector-mediated strategies allowing delivery of a large variety of small molecules as well as proteins across cell membranes in vitro and the BBB in vivo. CPP strategy suffers from several limitations such as toxicity and immunogenicity—like the cationization strategy—as well as the instability of peptide vectors in biological media. The review concludes by stressing the need to improve the understanding of AMT mechanisms at BBB and the effectiveness of cationized proteins and CPP-vectorized proteins as neurotherapeutics
Nonviral Approaches for Neuronal Delivery of Nucleic Acids
The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges
A Binary Ant Colony Optimization Classifier for Molecular Activities
Chemical fingerprints encode the presence or absence of molecular features and are available in many large databases. Using a variation of the Ant Colony Optimization (ACO) paradigm, we describe a binary classifier based on feature selection from fingerprints. We discuss the algorithm and possible cross-validation procedures. As a real-world example, we use our algorithm to analyze a Plasmodium falciparum inhibition assay and contrast its performance with other machine learning paradigms in use today (decision tree induction, random forests, support vector machines, artificial neural networks). Our algorithm matches established paradigms in predictive power, yet supplies the medicinal chemist and basic researcher with easily interpretable results. Furthermore, models generated with our paradigm are easy to implement and can complement virtual screenings by additionally exploiting the precalculated fingerprint information
Drug loading into porous calcium carbonate microparticles by solvent evaporation
Drug loading into porous carriers may improve drug release of poorly water-soluble drugs. However, the widely used impregnation method based on adsorption lacks reproducibility and efficiency for certain compounds. The aim of this study was to evaluate a drug-loading method based on solvent evaporation and crystallization, and to investigate the underlying drug-loading mechanisms. Functionalized calcium carbonate (FCC) microparticles and four drugs with different solubility and permeability properties were selected as model substances to investigate drug loading. Ibuprofen, nifedipine, losartan potassium, and metronidazole benzoate were dissolved in acetone or methanol. After dispersion of FCC, the solvent was removed under reduced pressure. For each model drug, a series of drug loads were produced ranging from 25% to 50% (w/w) in steps of 5% (w/w). Loading efficiency was qualitatively analyzed by scanning electron microscopy (SEM) using the presence of agglomerates and drug crystals as indicators of poor loading efficiency. The particles were further characterized by mercury porosimetry, specific surface area measurements, differential scanning calorimetry, and USP2 dissolution. Drug concentration was determined by HPLC. FCC-drug mixtures containing equivalent drug fractions but without specific loading strategy served as reference samples. SEM analysis revealed high efficiency of pore filling up to a drug load of 40% (w/w). Above this, agglomerates and separate crystals were significantly increased, indicating that the maximum capacity of drug loading was reached. Intraparticle porosity and specific surface area were decreased after drug loading because of pore filling and crystallization on the pore surface. HPLC quantification of drugs taken up by FCC showed only minor drug loss. Dissolution rate of FCC loaded with metronidazole benzoate and nifedipine was faster than the corresponding FCC-drug mixtures, mainly due to surface enlargement, because only sma fractions of amorphous drug (12.5%, w/w, and 8.9%, w/w, respectively) were found by thermal analysis. Combination of qualitative SEM analysis and HPLC quantification was sufficient to proof the feasibility of the solvent-evaporation method for the loading of various drugs into FCC. Mechanistic investigation revealed that a high specific surface area of the carrier is required to facilitate heterogeneous nucleation, and large pore sizes (up to 1mum) are beneficial to reduce crystallization pressures and allow drug deposition within the pores. The solvent-evaporation method allows precise drug loading and appears to be suitable for scale-up
Pooled population pharmacokinetic analysis of tribendimidine for the treatment of Opisthorchis viverrini infections
Opisthorchiasis, caused by the food-borne trematode Opisthorchis viverrini, affects more than 8 million people in Southeast Asia. In the framework of a phase 2b clinical trial conducted in Lao PDR, pharmacokinetic samples from 125 adult and adolescent O. viverrini patients treated with 400 mg tribendimidine were obtained following the design of an sparse sampling scheme at 20 min, 2, 7.75, 8 and 30 h after treatment, using dried blood spot sampling. Pharmacokinetic data for the metabolites dADT and adADT were pooled with data from two previous dose-ascending trials and evaluated using nonlinear mixed-effects modelling. The observed pharmacokinetic data were described using a flexible transit absorption model for the active metabolite dADT followed by one-compartment disposition models for both metabolites. Significant covariates were age, body weight, formulation, and breaking of the enteric coating on the tablets. There were significant associations between O. viverrini cure and both dADT Cmax and AUC (p-values <0.001), with younger age associated with a higher probability of cure. Modelling and simulation of exposures in a patients with different weight and age combinations showed that an oral single dose of 400 mg tribendimidine attained therapeutic success in over 90% of adult patients. Our data confirmed that tribendimidine could be a valuable novel alternative to the standard treatment praziquantel for the treatment of O. viverrini infections
- …