167 research outputs found

    Comparing Aberration Detection Methods with Simulated Data

    Get PDF
    We compared aberration detection methods requiring historical data to those that require little background by using simulated data. Methods that require less historical data are as sensitive and specific as those that require 3–5 years of data. These simulations can determine which method produces appropriate sensitivity and specificity

    Method selection and adaptation for distributed monitoring of infectious diseases for syndromic surveillance

    Get PDF
    AbstractBackgroundAutomated surveillance systems require statistical methods to recognize increases in visit counts that might indicate an outbreak. In prior work we presented methods to enhance the sensitivity of C2, a commonly used time series method. In this study, we compared the enhanced C2 method with five regression models.MethodsWe used emergency department chief complaint data from US CDC BioSense surveillance system, aggregated by city (total of 206 hospitals, 16 cities) during 5/2008–4/2009. Data for six syndromes (asthma, gastrointestinal, nausea and vomiting, rash, respiratory, and influenza-like illness) was used and was stratified by mean count (1–19, 20–49, ⩾50 per day) into 14 syndrome-count categories. We compared the sensitivity for detecting single-day artificially-added increases in syndrome counts. Four modifications of the C2 time series method, and five regression models (two linear and three Poisson), were tested. A constant alert rate of 1% was used for all methods.ResultsAmong the regression models tested, we found that a Poisson model controlling for the logarithm of total visits (i.e., visits both meeting and not meeting a syndrome definition), day of week, and 14-day time period was best. Among 14 syndrome-count categories, time series and regression methods produced approximately the same sensitivity (<5% difference) in 6; in six categories, the regression method had higher sensitivity (range 6–14% improvement), and in two categories the time series method had higher sensitivity.DiscussionWhen automated data are aggregated to the city level, a Poisson regression model that controls for total visits produces the best overall sensitivity for detecting artificially added visit counts. This improvement was achieved without increasing the alert rate, which was held constant at 1% for all methods. These findings will improve our ability to detect outbreaks in automated surveillance system data

    Optimizing Use of Multistream Influenza Sentinel Surveillance Data

    Get PDF
    We applied time-series methods to multivariate sentinel surveillance data recorded in Hong Kong during 1998–2007. Our study demonstrates that simultaneous monitoring of multiple streams of influenza surveillance data can improve the accuracy and timeliness of alerts compared with monitoring of aggregate data or of any single stream alone

    Using laboratory-based surveillance data for prevention: an algorithm for detecting Salmonella outbreaks.

    Get PDF
    By applying cumulative sums (CUSUM), a quality control method commonly used in manufacturing, we constructed a process for detecting unusual clusters among reported laboratory isolates of disease-causing organisms. We developed a computer algorithm based on minimal adjustments to the CUSUM method, which cumulates sums of the differences between frequencies of isolates and their expected means; we used the algorithm to identify outbreaks of Salmonella Enteritidis isolates reported in 1993. By comparing these detected outbreaks with known reported outbreaks, we estimated the sensitivity, specificity, and false-positive rate of the method. Sensitivity by state in which the outbreak was reported was 0%(0/1) to 100%. Specificity was 64% to 100%, and the false-positive rate was 0 to 1

    A simulation study comparing aberration detection algorithms for syndromic surveillance

    Get PDF
    BACKGROUND: The usefulness of syndromic surveillance for early outbreak detection depends in part on effective statistical aberration detection. However, few published studies have compared different detection algorithms on identical data. In the largest simulation study conducted to date, we compared the performance of six aberration detection algorithms on simulated outbreaks superimposed on authentic syndromic surveillance data. METHODS: We compared three control-chart-based statistics, two exponential weighted moving averages, and a generalized linear model. We simulated 310 unique outbreak signals, and added these to actual daily counts of four syndromes monitored by Public Health – Seattle and King County's syndromic surveillance system. We compared the sensitivity of the six algorithms at detecting these simulated outbreaks at a fixed alert rate of 0.01. RESULTS: Stratified by baseline or by outbreak distribution, duration, or size, the generalized linear model was more sensitive than the other algorithms and detected 54% (95% CI = 52%–56%) of the simulated epidemics when run at an alert rate of 0.01. However, all of the algorithms had poor sensitivity, particularly for outbreaks that did not begin with a surge of cases. CONCLUSION: When tested on county-level data aggregated across age groups, these algorithms often did not perform well in detecting signals other than large, rapid increases in case counts relative to baseline levels

    Accounting for seasonal patterns in syndromic surveillance data for outbreak detection

    Get PDF
    BACKGROUND: Syndromic surveillance (SS) can potentially contribute to outbreak detection capability by providing timely, novel data sources. One SS challenge is that some syndrome counts vary with season in a manner that is not identical from year to year. Our goal is to evaluate the impact of inconsistent seasonal effects on performance assessments (false and true positive rates) in the context of detecting anomalous counts in data that exhibit seasonal variation. METHODS: To evaluate the impact of inconsistent seasonal effects, we injected synthetic outbreaks into real data and into data simulated from each of two models fit to the same real data. Using real respiratory syndrome counts collected in an emergency department from 2/1/94–5/31/03, we varied the length of training data from one to eight years, applied a sequential test to the forecast errors arising from each of eight forecasting methods, and evaluated their detection probabilities (DP) on the basis of 1000 injected synthetic outbreaks. We did the same for each of two corresponding simulated data sets. The less realistic, nonhierarchical model's simulated data set assumed that "one season fits all," meaning that each year's seasonal peak has the same onset, duration, and magnitude. The more realistic simulated data set used a hierarchical model to capture violation of the "one season fits all" assumption. RESULTS: This experiment demonstrated optimistic bias in DP estimates for some of the methods when data simulated from the nonhierarchical model was used for DP estimation, thus suggesting that at least for some real data sets and methods, it is not adequate to assume that "one season fits all." CONCLUSION: For the data we analyze, the "one season fits all " assumption is violated, and DP performance claims based on simulated data that assume "one season fits all," for the forecast methods considered, except for moving average methods, tend to be optimistic. Moving average methods based on relatively short amounts of training data are competitive on all three data sets, but are particularly competitive on the real data and on data from the hierarchical model, which are the two data sets that violate the "one season fits all" assumption

    The Early Bird Catches The Term: Combining Twitter and News Data For Event Detection and Situational Awareness

    Full text link
    Twitter updates now represent an enormous stream of information originating from a wide variety of formal and informal sources, much of which is relevant to real-world events. In this paper we adapt existing bio-surveillance algorithms to detect localised spikes in Twitter activity corresponding to real events with a high level of confidence. We then develop a methodology to automatically summarise these events, both by providing the tweets which fully describe the event and by linking to highly relevant news articles. We apply our methods to outbreaks of illness and events strongly affecting sentiment. In both case studies we are able to detect events verifiable by third party sources and produce high quality summaries

    Recursive least squares background prediction of univariate syndromic surveillance data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect.</p> <p>Methods</p> <p>Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method.</p> <p>Results</p> <p>We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts.</p> <p>Conclusion</p> <p>The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems.</p
    corecore