516 research outputs found

    Small RNA asymmetry in RNAi: Function in RISC assembly and gene regulation

    Get PDF
    RNAi is a conserved gene-specific regulatory mechanism, which silences target gene expression transcriptionally and post-transcriptionally. The RNAi machinery converts the sequence specific information of a long double stranded RNAs (dsRNAs) into small 21-22 nt long dsRNAs (siRNAs, miRNAs) which assemble into an effector complex, the RNA induced silencing complex (RISC). RISC assembly is asymmetric; one strand of an siRNA or a miRNA preferentially incorporates into the RNA-protein complex. Here, I review the rules of the asymmetric RISC formation and discuss their possible regulatory function in several steps in RNAi. © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

    Transfer RNA-derived fragments: Origins, processing, and functions

    Full text link
    Deep sequencing approaches have revealed multiple types of small RNAs with known and unknown functions. In this review we focus on a recently identified group of small RNAs that are derived from transfer RNAs (tRNAs), tRNA fragments (tRFs). We review the mechanism of their processing and their functions in mammalian cells, and highlight points of possible cross-talk between tRFs and the canonical small RNA pathway characterized by small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). We also propose a nomenclature that is based on their processing characteristics. © 2011 John Wiley & Sons, Ltd

    Trna-derived fragments (Trfs): Emerging new roles for an ancient RNA in the regulation of gene expression

    Full text link
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. This review will summarise the recent discoveries and current state of research on short noncoding RNAs derived from tRNAs—known as tRNA-derived fragments (tRFs). It will describe the features of the known subtypes of these RNAs; including sequence characteristics, protein interactors, expression characteristics, biogenesis, and similarity to canonical miRNA pathways. Also their role in regulating gene expression; including mediating translational suppression, will be discussed. We also highlight their potential use as biomarkers, functions in gene regulation and links to disease. Finally, this review will speculate as to the origin and rationale for the conservation of this novel class of noncoding RNAs amongst both prokaryotes and eukaryotes

    Principles and effects of microRNA-mediated post-transcriptional gene regulation

    Full text link
    MicroRNAs (miRNAs) are abundant regulatory RNAs involved in the regulation of many key biological processes. Recent advances in understanding the mechanism of RNA interference and miRNA-mediated mechanisms shed light on major principals of the formation of the regulatory complex and provide models to explain how these small regulatory RNA species interfere with gene expression and how they influence the translational status of the transcriptome. © 2006 Nature Publishing Group. All rights reserved

    RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs.

    Full text link
    The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field

    Another "Loophole" in miRNA processing

    Full text link
    In this issue of Molecular Cell, Suzuki et al. (2011) present the intriguing finding that an RNAse known to play an important role in immunity regulates miRNA processing in cancer and inflammation by cleaving the terminal loops of many miRNAs. © 2011 Elsevier Inc

    A comparative analysis of single cell small RNA sequencing data reveals heterogeneous isomiR expression and regulation.

    Full text link
    MicroRNAs (miRNAs) are non-coding small RNAs which play a critical role in the regulation of gene expression in cells. It is known that miRNAs are often expressed as multiple isoforms, called isomiRs, which may have alternative regulatory functions. Despite the recent development of several single cell small RNA sequencing protocols, these methods have not been leveraged to investigate isomiR expression and regulation to better understand their role on a single cell level. Here we integrate sequencing data from three independent studies and find substantial differences in isomiR composition that suggest that cell autonomous mechanisms may drive isomiR processing. We also find evidence of altered regulatory functions of different classes of isomiRs, when compared to their respective wild-type miRNA, which supports a biological role for many of the isomiRs that are expressed

    RNA Binding Proteins in the miRNA pathway

    Full text link
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets

    Construction of competing endogenous RNA networks from paired RNA-seq data sets by pointwise mutual information

    Full text link
    © 2019 The Author(s). Background: A long noncoding RNA (lncRNA) can act as a competing endogenous RNA (ceRNA) to compete with an mRNA for binding to the same miRNA. Such an interplay between the lncRNA, miRNA, and mRNA is called a ceRNA crosstalk. As an miRNA may have multiple lncRNA targets and multiple mRNA targets, connecting all the ceRNA crosstalks mediated by the same miRNA forms a ceRNA network. Methods have been developed to construct ceRNA networks in the literature. However, these methods have limits because they have not explored the expression characteristics of total RNAs. Results: We proposed a novel method for constructing ceRNA networks and applied it to a paired RNA-seq data set. The first step of the method takes a competition regulation mechanism to derive candidate ceRNA crosstalks. Second, the method combines a competition rule and pointwise mutual information to compute a competition score for each candidate ceRNA crosstalk. Then, ceRNA crosstalks which have significant competition scores are selected to construct the ceRNA network. The key idea, pointwise mutual information, is ideally suitable for measuring the complex point-to-point relationships embedded in the ceRNA networks. Conclusion: Computational experiments and results demonstrate that the ceRNA networks can capture important regulatory mechanism of breast cancer, and have also revealed new insights into the treatment of breast cancer. The proposed method can be directly applied to other RNA-seq data sets for deeper disease understanding

    Triple SILAC identified progestin-independent and dependent PRA and PRB interacting partners in breast cancer

    Full text link
    Progesterone receptor (PR) isoforms, PRA and PRB, act in a progesterone-independent and dependent manner to differentially modulate the biology of breast cancer cells. Here we show that the differences in PRA and PRB structure facilitate the binding of common and distinct protein interacting partners affecting the downstream signaling events of each PR-isoform. Tet-inducible HA-tagged PRA or HA-tagged PRB constructs were expressed in T47DC42 (PR/ER negative) breast cancer cells. Affinity purification coupled with stable isotope labeling of amino acids in cell culture (SILAC) mass spectrometry technique was performed to comprehensively study PRA and PRB interacting partners in both unliganded and liganded conditions. To validate our findings, we applied both forward and reverse SILAC conditions to effectively minimize experimental errors. These datasets will be useful in investigating PRA- and PRB-specific molecular mechanisms and as a database for subsequent experiments to identify novel PRA and PRB interacting proteins that differentially mediated different biological functions in breast cancer
    • …
    corecore