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Abstract RNAi is a conserved gene-specific regulatory mecha-
nism, which silences target gene expression transcriptionally
and post-transcriptionally. The RNAi machinery converts the
sequence specific information of a long double stranded RNAs
(dsRNAs) into small 21–22 nt long dsRNAs (siRNAs, miRNAs)
which assemble into an effector complex, the RNA induced
silencing complex (RISC). RISC assembly is asymmetric; one
strand of an siRNA or a miRNA preferentially incorporates into
the RNA–protein complex. Here, I review the rules of the asym-
metric RISC formation and discuss their possible regulatory
function in several steps in RNAi.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

RNA interference (RNAi) is a diverse, evolutionarily con-

served mechanism in eukaryotic cells, which inhibits the tran-

scription and translation of target genes in a sequence-specific

manner. RNAi is triggered by dsRNA that is converted to

small regulatory RNAs. These small RNA species are loaded

into the RNAi effector complexes and guide the machinery to

the target RNA in a sequence-specific manner. RNAi-related

machines control post-transcriptional gene silencing by cleav-

ing, destabilizing the targeted cognate RNAs or preventing

their translation. Increasing evidence indicate that a nuclear

RNAi mechanism is responsible for transcriptional regula-

tions such as heterochromatin silencing, co-suppression and

silencing of transposable elements.
2. Sources and processing of small regulatory RNAs in the RNAi

pathways

The sequence specificity of RNAi is assured by a group

of small regulatory RNAs such as small interfering RNAs

(siRNAs), repeat associated siRNAs (rasiRNAs), trans-acting

siRNAs (tasiRNAs) [62,83] and small-scan RNAs (scnRNAs)

[52] that are processed from long double stranded RNAs or,
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like microRNAs (miRNAs), from hairpin RNAs with a

stem–loop structure [2]. Eukaryotic cells can synthesize long

double stranded RNAs (dsRNA) from a wide variety of

sources using two distinct mechanisms. Bidirectional transcrip-

tion from inverted repeats of transgenes and transposons and

read-through transcription from convergent promoters di-

rectly produces long dsRNA [5]. In addition, organisms whose

genomes encode RNA-dependent RNA polymerases (RdRP)

such as fission yeast, fungi, worms and plants can convert pri-

mary and aberrant transcripts into dsRNA [1,85]. The origin

of the dsRNA can also be extracellular. DNA and RNA

viruses produce dsRNA intermediates during their replication

[84], and some viruses transcribe hairpin like structures that

yield functional miRNAs [11,64,65,78]. dsRNA delivery into

plants and animal cells using various techniques is a powerful

tool in reverse genetics [17,18,28].

Although the origins of dsRNA triggers are diverse, the

mechanisms that transform the genetic information of a long

dsRNA into the sequence-specific determinant small RNA

are very similar. Both siRNAs that originate from long,

perfectly-paired dsRNAs and plant miRNAs are processed

by Dicer, a class III RNAse III enzyme which processively

chops its substrate into 21–28 nucleotide long double-stranded

RNA [8,70,79]. However, two separate protein complexes

orchestrate the maturation of animal miRNAs. In the nucleus

the microprocessor complex, containing Drosha, a class II

RNAse III enzyme, processes primary-miRNAs (pri-miRNAs)

into pre-miRNAs, defining one end of a miRNA with a

cleavage at approximately two helical turns (22 nucleotides)

from the loop structure [15,20,21,33,91]. Pre-miRNAs are

exported by exportin-5 into the cytoplasm where Dicer cleaves

the pre-miRNA near its stem–loop liberating the mature

[9,46,59,89] (Hammond review and Chen review, this issue).

According to recent models, Drosha and Dicer cleave in sim-

ilar ways. The two RNAse III domains of both enzymes form

an intramolecular processing center establishing two active

sites in near proximity. Each catalytically active site cleaves

one phosphodiester bond on the opposite strands of an siRNA

or miRNA precursor, which give rise to the characteristic

21–28 nt long double-stranded RNA with 2 nucleotide 3 0over-

hangs [21,92]. Drosha and/or Dicer also determine the end

structure of the siRNA and miRNA since RNAse III cleavage

characteristically leaves 5 0 phosphate and 2 0,3 0 hydroxy ter-

mini. Chemically synthesized small RNAs that contain all

the traits of a mature siRNA or miRNA are competent for

efficient sequence-specific gene regulation [23].
blished by Elsevier B.V. All rights reserved.
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3. Strand selection in RISC formation

Processing of long dsRNAs or pre-miRNAs results in the

production of regulatory small RNAs with double-stranded

attributes. However, early biochemical data and transfection

experiments in human cell culture suggested that the active

regulatory RNA species in the RNAi pathways indeed are

single-stranded [49,55,72]. Drosophila and human cell extracts

can be programmed with single-stranded small RNAs to

produce efficient RISC activity in vitro, and single-stranded

siRNAs initiate gene specific regulation upon transfection into

human cells. Recently, the minimal cleavage competent human

RISC, using recombinant human AGO2, could be reconsti-

tuted only with single stranded siRNA [68]. In addition, the

majority of miRNAs, the most abundant sequence specific

determinant in RNAi, are represented as single-stranded

RNAs at steady state RNA levels supporting the idea that

miRNAs, just like siRNAs, are incorporated into the RNA-

protein complex as single-stranded RNA.

If RISC chooses one of the strands of an siRNA or miRNA,

is there a bias in the strand selection or are both strands of a

small regulatory RNA equally potent to incorporate into the

effector complex? The quest to answer this question lead two

research groups to the discovery that the relative thermody-

namic characteristics of the two 5 0 termini of an siRNA and

miRNA determine which strand has inherent regulatory func-

tion. One group analyzed the thermodynamic properties of the

cloned animal miRNAs, hypothesizing that the mature, cloned

miRNAs represent the strand from the stem of a pre-miRNA

that preferentially incorporate into RISC. Their comparative

sequence analysis demonstrated that the 5 0 end of mature miR-

NA strands have significantly lower thermodynamic stability

compared to the 5 0 termini of the opposite strands in the stem

of the pre-miRNA which are under-represented in miRNA

cloning experiments. Next they showed with transfection

experiments in human cells that chemically synthesized siR-

NAs that are efficient in gene silencing have similar thermody-

namic profiles. The 5 0 end of the guiding (anti-sense) strands of

the competent siRNAs are less stable than the 5 0 end of the

passenger (sense) strands [29]. In vitro experiments with

chemically synthesized siRNAs and radiolabeled RNA targets

in Drosophila cell-free embryo extract came to the same con-

clusion and provided additional insight into the mechanism

of asymmetric RISC assembly [71]. The advantage of the
Fig. 1. 5 0 end strength calculation of an asymmetric siRNA [71] using the nea
and the guiding (B) strands. The color code represents the base pair and
favored strand in RISC formation is highlighted in red.
in vitro system is that the sequence of both strands of an siR-

NA can be changed and modified together with the corre-

sponding target sequences and in addition, both the guiding

and the passenger-strand RNAi activity can be monitored by

providing cognate, in vitro transcribed target RNAs to each

of the strands of the siRNA separately. Furthermore,

in vitro it is possible to measure the concentration of the active

RISC by capturing the incorporated single-stranded RNA.

This study showed that asymmetric RISC formation is defined

by the relative thermodynamic strength of the first four nucle-

otide-pairs of the 5 0 termini of an siRNA calculated by the

nearest-neighbor method (Fig. 1). The mechanism which mon-

itors the thermodynamic properties of the two 5 0 ends of an

siRNA can sense variation as small as a single hydrogen bond

since altering a G:C base-pair to a I:C base-pair of a closely

symmetric siRNA made the modified strand more preferable

for RISC assembly. An siRNA which consists of only unmod-

ified base-pairs still undergoes asymmetric RISC formation,

even if the energy difference is only �0.3 kcal/mol. The 5 0

end strength of an siRNA not only defines which strand is

selected to incorporate into the regulatory complex, but to

some extent has an effect on general RISC formation since

loosening both ends of a symmetric siRNA at the same time

increase either the sense or anti-sense strand derived cleavage

activity.
4. Role of siRNA asymmetry in RISC assembly

Between processing of the long dsRNA into small RNAs and

the formation of the active regulatory complex there is an inter-

mediate step in which small RNAs are activated and handed

over to the catalytic core of the RNAi machinery. Combined

genetic and biochemical approaches in flies provided the first

insight into how the RISC loading complex (RLC) places one

strand of an siRNA into RISC. In flies, two similar but special-

ized mechanisms exist to process and activate either siRNAs

or miRNAs. Two distinct Dicers, Dcr-2 and Dcr-1, process

long dsRNAs and pre-miRNAs respectively, into siRNAs and

miRNAs that are incorporated into separate, but similar effec-

tor complexes [35,57,66]. In RLC, Dcr-2 and R2D2, an RNA

binding protein with tandem dsRNA binding motifs, form a

heterodimer and bind to double-stranded siRNAs [42,81]

(Birchler review, this issue). This complex recognizes the
rest-neighbor method. Thermodynamic properties of the passenger (A)
corresponding nearest-neighbor DG0

37 values. The thermodynamically
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authenticity of the siRNA and senses the free energy differences

between the two 5 0 ends. R2D2 binds to the more thermody-

namically stable end of an siRNA, and its binding is facilitated

by the characteristic 5 0 phosphate. By blocking the non-pre-

ferred strand of the siRNA, R2D2 positions Dcr-2 at the oppo-

site end of the duplex (Fig. 2). Dcr-2 involvement in the

recognition of the asymmetry suggests that after the siRNA is

processed by Dicer and is released, the RLC binds to it again

placing Dicer at the thermodynamically favorable end of the

siRNA. In spite of the fact that both Dcr-2 and R2D2 are re-

quired for unwinding in vivo, neither of these proteins alone,

nor the Dcr-2/R2D2 heterodimer, can unwind dsRNA

in vitro [82]. However, Ago2mutant flies are impaired in siRNA

unwinding despite the fact that RLC forms in Ago2 fly lysate

[57]. This data suggests that the catalytic engine of the siR-

NA-programmed RISC is required for siRNA unwinding.
Fig. 2. The thermodynamically favored siRNA (A) and miRNA (B) strand
stranded RNA binding protein. RLC: RISC loading complex. H: putative

"

: Argonaute catalytic activity. Open circle shows the thermodynamically l
Argonautes are the core proteins in every described RNAi

complex. They have two conserved protein domains, the

PAZ domain, which was proposed to bind single-stranded

RNA [39,75,86], and the PIWI motif, which shows structural

homology to the active center of RNAse H [47,60,61,76]

(Cheng review, this issue). RNAi-mediated RNA cleavage

shares several similarities with RNAse H activity. RISC leaves

5 0 phosphates on the 3 0 cleavage product, 3 0 hydroxy group on

the termini of the 5 0 cleavage product and its activity depends

on the presence of divalent cations [50,73] (Hammond review,

this issue). Several lines of evidence support that the Ago pro-

tein physically cooperates with the small RNA loading

machinery. The dsRNA binding domain of human Dicer

directly interacts with the PIWI domain of the human Ago2

protein [67] and Dicers generally co-immunoprecipitate with

Argonautes [57,79]. Recently it was demonstrated that the PIWI
(labeled in red) are loaded into RISC. DadR: Dicer associated double-
helicase. Ago: Argonaute protein. p: 5 0phosphate, OH: 2 0,3 0hydroxy.
ess stable end of the siRNA and miRNA.
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domain of Archeoglobus fulgidus Piwi protein can be co-crys-

tallized with siRNA-like duplex, suggesting that Argonaute

proteins can bind double-stranded siRNA to some extent

[47,61].

Do similar loading complexes that recognize the thermody-

namic properties of the miRNA exist in flies or in other ani-

mals where only a single Dicer processes dsRNAs and

miRNAs? The answer is very likely yes. miRNA maturation

follows the asymmetry ‘‘rule’’, which means that the thermo-

dynamically more favorable strand of the stem of the

pre-miRNAs incorporate into the miRNA programmed regu-

latory complex. RDE-4, an R2D2-like protein in C. elegans,

is requi- red for RNAi and interacts with the worm Dicer

[79] (Grishok review, this issue). In plants the dsRNA bind-

ing protein HYL1 interacts with DCL1 [22], and the HYL1

paralog DRB4 binds to DCL4 [24]. Very recently several

groups identified Loquacious, a fly R2D2 paralog, that inter-

acts with fly Dcr-1 and is essential for miRNA maturation

[19,69]. TRBP, a human ortholog of R2D2 and Loquacious,

is required both siRNA mediated RISC activity and miRNA

processing [12]. However, it is not determined yet if these

dsRNA binding proteins have simi- lar functions to R2D2

or if they help Dicer to position and cleave the mature miR-

NA from its precursor similar to how Drosha/DGCR8 ori-

ents Drosha in the pre-miRNA producing microprocessor

complex (Fig. 2B).
5. Passenger strand elimination

What is the mechanism that separates the two strands of an

siRNA or miRNA and destroys the strand with the relative

higher 5 0 termini free energy profile. In vitro experiments in

fly embryo extract showed that the thermodynamically non-

preferred strand is eliminated after unwinding [71]. It has been

suggested that fly Ago2 can eliminate the passenger strand

through the same activity that can cleave the cognate RNA

target [32] (Fig. 2A). There are several experimental results

which can support this idea. The PIWI motif of Argonautes

could bind duplex siRNAs and directly interact with Dicer

suggesting that RLC can forward the siRNA in double-

stranded form to an Argonaute protein. Affinity purified

human Ago2 containing single-stranded RNA can cleave the

exogenously added passenger strand through RISC activity

suggesting that the small size of the target is not a limiting

factor in the sequence specific cleavage [50]. However, there

are some facts which discourage this hypothesis as an exclusive

mechanism to eliminate the passenger strand or the miRNA\

sequence. It was shown that siRNA or miRNA programmed

RISC does not require ATP for the initial cleavage of the

target, still it is well-established that siRNA unwinding is an

energy dependent step in RISC formation [55]. Furthermore,

not every Argonaute protein is cleavage competent. Perhaps

plants are the best candidates for using the passenger strand

cleavage for RISC activation because both siRNAs and miR-

NAs are near-perfectly complementary and plant miRNAs

regulate the target mRNA through sequence-specific cleavage

[43]. In fly both the miRNA-programmed Ago1 and the siR-

NA associated Ago2 can mediate target cleavage if the cognate

RNA is provided [57]. In mammals only Ago2, one of the four

Argonautes, has catalytic activity in spite of the fact that all

ectopically expressed Argonautes equally bind transfected siR-
NAs [40,51]. Since in worm the classical RNAi activity has yet

to be recapitulated we do not know how many, if any, among

the 27 members of the Argonaute gene family have catalytic

activity. In addition, recombinant human Ago2 can only show

cleavage competent RISC activity when it is programmed with

single-stranded siRNA suggesting that Argonautes alone are

not capable of cleaving double-stranded siRNA [68]. It would

be difficult to explain the elimination of the miRNA\ sequence

in animal systems with selective strand cleavage. Extensive

complementary between the guiding strand or the miRNA

and the target RNA is required for efficient target cleavage.

Since the stems of pre-miRNAs are not perfectly paired, they

contain mismatches and bulges, it is unlikely that miRNA

maturation can rely on cleavage of the miRNA\ sequences

even if they are incorporated in cleavage competent Argonaute

complexes.

What other possible mechanism can select one of the strands

of siRNAs or miRNAs? DEAD-box RNA helicases rearrange

RNA duplexes in an ATP-dependent manner in distinct steps in

RNAmetabolism. siRNA ‘‘unwinding’’ is an energy dependent

step which implies the participation of such RNA helicases.

RNA helicases bind to single-stranded RNA to destabilize

the nearby short RNA duplexes. The RLC positions siRNAs

by blocking the thermodynamically less favorable strand and

offering the 5 0 end of the duplex that has propensity to fray

for RISC formation [82]. It can be envisioned that a non-

processive helicase binds to the end of the siRNA that offers

more single-stranded feature, by producing more terminal

‘‘breathing’’ further destabilizing the duplex (Fig. 2). Indeed,

genetic data and immunoprecipitation experiments identified

several RNA helicases that are necessary for or associated with

RNAi in a wide range of eukaryotic organisms. Which among

the described RNAi related helicases are the best candidates to

melt the double-stranded siRNA or miRNAs to facilitate RISC

formation?

In C. elegans two closely related DEAD-box helicases,

(DRH-1/DRH-2) were co-immunoprecipitated with the worm

Dicer (DCR-1) and it was shown that they are required for effi-

cient RNAi activity [79]. Intriguingly, these helicases are in a

protein complex that is very similar in context to the fly

RLC. DRH-1/DRH-2 interact with DCR-1, RDE-4, a paralog

of the fly R2D2, and the Argonaute protein RDE-1 that is re-

quired for long dsRNA initiated RNAi. DRH-1/DRH-2

homologues are present in flies and vertebrates also. The

human DRH-1/DRH-2 homologue RIG-1 is implicated in

the interferon response by sensing viral dsRNA [90].

Gemin3, a DEAD-box helicase originally identified in the

Survival of Motor Neuron (SMN) protein complex, co-immu-

noprecipitates with human Ago2 and many miRNAs as a

component of the human miRNP [53]. Interestingly, Gemin3

is the only RNA helicase among those that are implicated in

RNAi pathways which ATP-dependent RNA unwinding acti-

vity was confirmed in vitro [87].

Recently in flies a genetic screen for embryonic axis specifi-

cation combined with biochemical analysis revealed that a

non-canonical RNA helicase, armitage, is required for RNAi

in vivo and for RISC formation in vitro [13,81]. In the absence

of armi, RISC formation is impaired. However, addition of

single-stranded siRNA to armi mutant fly lysate could not

restore RISC activity suggesting that it has role in RISC assem-

bly upstream of siRNA unwinding. SDE3, the closest plant

homologue of armitage is also involved in post-trancriptional



5854 G. Hutvagner / FEBS Letters 579 (2005) 5850–5857
gene silencing (PTGS) and participates in the cell-to-cell prop-

agation of the silencing trigger [14].

RNAi based screens in C. elegans revealed three additional

DEAD-box helicases that are required for gene silencing. All

three genes have homologues in Drosophila and vertebrates

[30].
6. Small RNA asymmetry in gene regulation

Inarguably, the biggest impact of the asymmetric RISC

formation on gene regulation is to determine which strand of

a miRNA is incorporated into RISC. miRNAs are abundant

regulatory RNAs that consist of �1–2% of the worm, fly,

and human gene pools, and recent bio-informatic predictions

suggest they may regulate the expression of up to one third

of the expressed genes which makes miRNAs the biggest

player in eukaryotic post-transcriptional gene regulation

[31,36,77] (Bentwich review, this issue). Since miRNAs are pre-

dicted to regulate a large number of transcription factors, their

influence on gene expression could extend far beyond the post-

transcriptional gene expression phenomenon. miRNA medi-

ated gene regulation is fundamentally different in plants and

animals. The majority of plant miRNAs eliminate the expres-

sion of their target RNAs by cleaving them within a near-

perfectly complementary site [48]. miRNA-driven sequence

specific target cleavage is rare in animal systems [88] as the

complementarity between the majority of miRNAs and their

putative or validated target sites, are only restricted to the seed

sequences, 2–7 nucleotides of the 5 0 end of the miRNA. This

level of complementarity is insufficient to initiate cleavage of

the target sites even if the miRNA is bound to a catalytically

active Argonaute protein; therefore, animal miRNAs co-oper-

atively (targeting multiple target sites on the mRNA) silence

gene expression [16]. The general view is that non-cleaving

miRNAs repress target gene expression by inhibiting protein

translation after the initiation step without degrading the

mRNA [58]. However, increasing evidence suggest that animal

miRNAs also can destabilize their target mRNAs. Putative

target genes were identified for a brain and muscle specific

miRNA by using mRNA arrays [38] and human Ago2 and

human miR-16 were demonstrated to participate in the AU-

rich element-mediated RNA decay [26]. Furthermore, ectopi-

cally expressed human Ago1-3 co-localize with miRNAs in

the P-bodies, which are cytoplasmatic foci of mRNA storage

and cap-dependent RNA degradation [41,74]. Recently it

was proposed that animal miRNAs micromanage the tran-

scriptome by fine-tuning the expression of their target mRNAs

[7]. To fulfill the requirements of this complex regulatory role,

miRNAs have to be spatially and temporarily regulated toge-

ther with their target transcripts. The known examples of

animal pri-miRNAs are Polymerase II (Pol II) transcripts with

5 0cap structures and poly (A) tails [34]. C. elegans pri-let-7

undergoes trans-splicing [10] and also in worms a cis-regula-

tory element in the genome was identified that regulates let-7

expression [27]. C-Myc transcription factor regulates the

expression of the miR-17 cluster in human cells [56].Together

the evidence suggest that the regulation of miRNAs and their

targets is very similar at the transcriptional level.

Sensing the thermodynamic properties of miRNAs could

provide an additional mechanism for controlling miRNA

levels at the step of RISC formation. In vitro experiments
showed that asymmetric RISC formation is not absolute.

One strand is preferentially incorporated into RISC, but the

strand not preferred thermodynamically could still form active

complex to some extent and drive target cleavage if the target

RNA is present. Furthermore, absolute RISC activity could be

increased by decreasing the 5 0 end free energy of a certain siR-

NA [71]. Theoretically, the relative thermodynamic strength at

the 5 0 termini of the miRNA determines the miRNA/ miRNA\

ratio and the absolute free energy profile of the 5 0ends can

influence the quantity of the active regulatory complex forma-

tion between different miRNAs. In addition, it has recently

been demonstrated that a human miRNA, miR-22, undergoes

tissue specific editing [45]. The editing changes two terminal A

nucleotides to I on the non-preferred 5 0end of the pre-miR-22

sequence which results in a dramatic change in the asymmetry,

suggesting that a fraction of this miRNA can produce elevated

level of the miRNA\ sequence. If this is a general phenome-

non, what is the impact of the miRNA\ in gene regulation?

As discussed above, it can mean that it merely regulates the

steady state level of the thermodynamically preferred strand

in an indirect way. However, it is very likely that some

miRNA\ sequences bear direct regulatory functions. The best

candidates for such miRNA\ are processed from thermody-

namically symmetric pre-miRNAs in which both miRNA

strands are equally competent for regulatory complex forma-

tion. Elaborate miRNA cloning experiments revealed the

existence of several miRNA\ sequences at the steady-state

RNA level [3,4,37] (Tuschl review, this issue). Their relative

abundance was originally calculated from their cloning fre-

quencies. In some cases, the tissue and developmental-specific

occurrence of the miRNA/miRNA\ sequences showed differ-

ent patterns supporting the idea that the two strands might

have different roles in gene regulation [4]. Since miRNA clon-

ing involves amplification steps and the bias in cloning prefer-

ence and efficiency cannot be excluded, a more quantitative

experimental approach is necessary to examine the possible

role of miRNA\ sequences in regulating gene expression.

Recently several miRNA micro-array methods have been em-

ployed to define tissue-specific miRNA expression patterns

and some of these arrays contain a few identified miRNA\ se-

quences [44,54,80]. Most of the miRNA/miRNA\ expression

patterns were similar, suggesting that the two strands are co-

regulated. An interesting exemption is miR-30a/miR-30a\.

miR-30a showed more dominant expression in adult mouse tis-

sues, however, only miR-30a\ expression was detected in three

and 28 day old embryonic bodies [80]. This significant differ-

ence in a miRNA/miRNA\ expression pattern can be ex-

plained with the tissue-specific editing which can reverse the

thermodynamic characteristics of the 5 0 ends of miR-30. To

generalize this potential level of miRNA regulation, more

extensive quantitative studies are required to compare the

expression of both strands of the miRNAs. In addition, bio-

computational expe- riments could shed light on miRNA\

associated regulatory functions by extending the target predic-

tion with the miRNA\ sequences.

An elegant example of siRNA asymmetry defined regulatory

mechanism was recently described in plants. Plants produce a

unique class of siRNAs called trans-acting siRNAs. tasiRNAs

correspond mostly to the sense strand of non-coding RNAs

which is converted to dsRNA by RdRp and processed by

Dicer into 21-nt increments. Plant miRNAs recognize the

nascent, non-coding RNA and initiate its cleavage setting a
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21-phase for progressive Dicer cleavage after the tagged pri-

mary RNAs are converted to dsRNAs. The asymmetry rule

was implicated in preventing RISC formation from the strand

of the tasiRNAs that is derived from the miRNA non-targeted

RNA, which would initiate the degradation of the tasiRNA

precursor [1] (Herr review, this issue).
7. siRNA asymmetry in siRNA design

The discovery of asymmetric RISC formation was delin-

eated from human transfection experiments that characterized

the thermodynamic properties of the efficient chemically

synthesized siRNAs [6,29]. Designing asymmetric siRNAs

can improve their efficiency in several ways. Human cells have

limited capacity to form RISC with exogenous siRNA [25],

therefore applying the asymmetry rule in siRNA design would

result in most of the available RISC being programmed with

the guiding strand. In addition, this would decrease the

amount of siRNA required for efficient silencing, since asym-

metric siRNA is effective in the sub-nM concentration range.

Applying asymmetric siRNA rules can also avoid unwanted

off-target effects. First, it would decrease the chances to knock

down gene expression with the passenger strand since its

potential to form active RISC is limited. Second, reduced siR-

NA concentration precludes the induction of the interferon

response which was shown to be activated upon introducing

siRNAs at high concentration [63]. Fraying the first nucleotide

of an siRNA could facilitate the design of effective siRNAs

when the target site is limited, such as targeting individual

members of a highly homologous gene families or knocking

down dominant mutant RNAs where the polymorphism bet-

ween the wild type and the mutant alleles are restricted to a

single or few nucleotides. In these cases there are only limited

or no possibilities to shift the siRNAs on the target to find a

thermodynamically favored guiding strand.
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