2 research outputs found

    Besifloxacin Ophthalmic Suspension: Emerging Evidence of its Therapeutic Value in Bacterial Conjunctivitis

    Get PDF
    Objective To outline the pharmacodynamics, efficacy and safety of besifloxacin ophthalmic suspension 0.6% in the treatment of bacterial conjunctivitis. Quality of Evidence MEDLINE database was searched to review recent pharmacodynamic and clinical studies evaluating besifloxacin and comparing besifloxacin to other topical antibiotics for ophthalmic use. Findings were limited to full-text articles from clinical journals in the English language. Main Message Bacterial resistance is a common source for treatment failure in bacterial conjunctivis. Besifloxacin, a novel fourth generation synthetic fluoroquinolone is likely to show lower resistance rates due to its mechanism of action and its short-term use for ocular infections only (decreased systemic exposure). Besifloxacin displays improved pharmacodynamic properties compared to other commonly used fluoroquinolones and has shown to be efficacious and safe in clinical studies. Conclusion Besifloxacin ophthalmic suspension 0.6% provides safe and efficacious treatment for bacterial conjunctivitis. The factors leading to bacterial resistance are diminished, which allows besifloxacin to be a favorable treatment option

    Remodeling of the AB site of rat parvalbumin and oncomodulin into a canonical EF-hand

    No full text
    Parvalbumin (PV) and the homologous protein oncomodulin (OM) contain three EF-hand motifs, but the first site (AB) cannot bind Ca2+. Here we aimed to recreate the putative ancestral proteins [D19-28E]PV and [D19-28E]OM by replacing the 10-residue-long nonfunctional loop in the AB site by a 12-residue canonical loop. To create an optical conformational probe we also expressed the homologs with a F102W replacement. Unexpectedly, in none of the proteins did the mutation reactivate the AB site. The AB-remodeled parvalbumins bind two Ca2+ ions with strong positive cooperativity (nH = 2) and moderate affinity ([Ca2+]0.5 = 2 microM), compared with [Ca2+]0.5 = 37 nM and nH = 1 for the wild-type protein. Increasing Mg2+ concentrations changed nH from 2 to 0.65, but without modification of the [Ca2+]0. 5-value. CD revealed that the Ca2+ and Mg2+ forms of the remodeled parvalbumins lost one-third of their alpha helix content compared with the Ca2+ form of wild-type parvalbumin. However, the microenvironment of single Trp residues in the hydrophobic cores, monitored using intrinsic fluorescence and difference optical density, is the same. The metal-free remodeled parvalbumins possess unfolded conformations. The AB-remodeled oncomodulins also bind two Ca2+ with [Ca2+]0.5 = 43 microM and nH = 1.45. Mg2+ does not affect Ca2+ binding. Again the Ca2+ forms display two-thirds of the alpha-helical content in the wild-type, while their core is still strongly hydrophobic as monitored by Trp and Tyr fluorescence. The metal-free oncomodulins are partially unfolded and seem not to possess a hydrophobic core. Our data indicate that AB-remodeled parvalbumin has the potential to regulate cell functions, whereas it is unlikely that [D19-28E]OM can play a regulatory role in vivo. The predicted evolution of the AB site from a canonical to an abortive EF-hand may have been dictated by the need for stronger interaction with Mg2+ and Ca2+, and a high conformational stability of the metal-free forms
    corecore