4,401 research outputs found
Plant Modelling Framework: software for building and running crop models on the APSIM platform
The Plant Modelling Framework (PMF) is a software framework for creating models that represent the plant components of farm system models in the agricultural production system simulator (APSIM). It is the next step in the evolution of generic crop templates for APSIM, building on software and science lessons from past versions and capitalising on new software approaches. The PMF contains a top-level Plant class that provides an interface with the APSIM model environment and controls the other classes in the plant model. Other classes include mid-level Organ, Phenology, Structure and Arbitrator classes that represent specific elements or processes of the crop and sub-classes that the mid-level classes use to represent repeated data structures. It also contains low-level Function classes which represent generic mathematical, logical, procedural or reference code and provide values to the processes carried out by mid-level classes. A plant configuration file specifies which mid-level and Function classes are to be included and how they are to be arranged and parameterised to represent a particular crop model. The PMF has an integrated design environment to allow plant models to be created visually. The aims of the PMF are to maximise code reuse and allow flexibility in the structure of models. Four examples are included to demonstrate the flexibility of application of the PMF; 1. Slurp, a simple model of the water use of a static crop, 2. Oat, an annual grain crop model with detailed growth, development and resource use processes, 3. Lucerne, perennial forage model with detailed growth, development and resource use processes, 4. Wheat, another detailed annual crop model constructed using an alternative set of organ and process classes. These examples show the PMF can be used to develop models of different complexities and allows flexibility in the approach for implementing crop physiology concepts into model set up
Irradiation study of a fully monolithic HV-CMOS pixel sensor design in AMS 180 nm
High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) based on the 180 nm
HV-CMOS process have been proposed to realize thin, fast and highly integrated
pixel sensors. The MuPix7 prototype, fabricated in the commercial AMS H18
process, features a fully integrated on-chip readout, i.e. hit-digitization,
zero suppression and data serialization. It is the first fully monolithic
HV-CMOS pixel sensor that has been tested for the use in high irradiation
environments like HL-LHC. We present results from laboratory and test beam
measurements of MuPix7 prototypes irradiated with neutrons (up to
) and protons (up to ) and compare the performance with non-irradiated
sensors. Efficiencies well above 90 % at noise rates below 200 Hz per pixel are
measured. A time resolution better than 22 ns is measured for all tested
settings and sensors, even at the highest irradiation fluences. The data
transmission at 1.25 Gbit/s and the on-chip PLL remain fully functional
The MuPix Telescope: A Thin, high Rate Tracking Telescope
The MuPix Telescope is a particle tracking telescope, optimized for tracking
low momentum particles and high rates. It is based on the novel High-Voltage
Monolithic Active Pixel Sensors (HV-MAPS), designed for the Mu3e tracking
detector. The telescope represents a first application of the HV-MAPS
technology and also serves as test bed of the Mu3e readout chain. The telescope
consists of up to eight layers of the newest prototypes, the MuPix7 sensors,
which send data self-triggered via fast serial links to FPGAs, where the data
is time-ordered and sent to the PC. A particle hit rate of 1 MHz per layer
could be processed. Online tracking is performed with a subset of the incoming
data. The general concept of the telescope, chip architecture, readout concept
and online reconstruction are described. The performance of the sensor and of
the telescope during test beam measurements are presented.Comment: Proceedings TWEPP 2016, 8 pages, 7 figure
MuPix7 - A fast monolithic HV-CMOS pixel chip for Mu3e
The MuPix7 chip is a monolithic HV-CMOS pixel chip, thinned down to 50 \mu m.
It provides continuous self-triggered, non-shuttered readout at rates up to 30
Mhits/chip of 3x3 mm^2 active area and a pixel size of 103x80 \mu m^2. The hit
efficiency depends on the chosen working point. Settings with a power
consumption of 300 mW/cm^2 allow for a hit efficiency >99.5%. A time resolution
of 14.2 ns (Gaussian sigma) is achieved. Latest results from 2016 test beam
campaigns are shown.Comment: Proceedingsfor the PIXEL2016 conference, submitted to JINST A
dangling reference has been removed from this version, no other change
Desempenho inicial de sementes de milho tratadas com biorreguladores submetidas a déficit hídrico.
Edição Especial contendo os Anais do XVIII Congresso Brasileiro de Sementes, Florianópolis, set. 2013
Inclusive b-jet and b\bar b-dijet production at the LHC via Reggeized gluons
We study inclusive -jet and -dijet production at the CERN LHC
invoking the hypothesis of gluon Reggeization in -channel exchanges at high
energy. The -jet cross section includes contributions from open -quark
production and from -quark production via gluon-to-bottom-pair
fragmentation. The transverse-momentum distributions of inclusive -jet
production measured with the ATLAS detector at the CERN LHC in different
rapidity ranges are calculated both within multi-Regge kinematics and
quasi-multi-Regge kinematics. The -dijet cross-section is calculated
within quasi-multi-Regge kinematics as a function of the dijet invariant mass
, the azimuthal angle between the two jets and the angular
variable . At the numerical calculation, we adopt the
Kimber-Martin-Ryskin and Bl\"umlein prescriptions to derive unintegrated gluon
distribution function of the proton from its collinear counterpart, for which
we use the Martin-Roberts-Stirling-Thorne set. We find good agreement with
measurements by the ATLAS and CMS Collaborations at the LHC at the hadronic
c.m.\ energy of TeV.Comment: 13 pages, 9 figure
Simulation of growth and development of diverse legume species in APSIM
This paper describes the physiological basis and validation of a generic legume model as it applies to 4 species: chickpea (Cicer arietinum L.), mungbean (Vigna radiata (L.) Wilczek), peanut (Arachis hypogaeaL.), and lucerne (Medicago sativa L.). For each species, the key physiological parameters were derived from the literature and our own experimentation. The model was tested on an independent set of experiments, predominantly from the tropics and subtropics of Australia, varying in cultivar, sowing date, water regime (irrigated or dryland), row spacing, and plant population density. The model is an attempt to simulate crop growth and development with satisfactory comprehensiveness, without the necessity of defining a large number of parameters. A generic approach was adopted in recognition of the common underlying physiology and simulation approaches for many legume species. Simulation of grain yield explained 77, 81, and 70% of the variance (RMSD = 31, 98, and 46 g/m2) for mungbean (n = 40, observed mean = 123 g/m2), peanut (n = 30, 421 g/m2), and chickpea (n = 31, 196 g/m2), respectively. Biomass at maturity was simulated less accurately, explaining 64, 76, and 71% of the variance (RMSD = 134, 236, and 125 g/m2) for mungbean, peanut, and chickpea, respectively. RMSD for biomass in lucerne (n = 24) was 85 g/m2 with an R2 of 0.55. Simulation accuracy is similar to that achieved by single-crop models and suggests that the generic approach offers promise for simulating diverse legume species without loss of accuracy or physiological rigour
- …