196 research outputs found

    doi:10.1093/nar/gkm688 DNA sequencing: bench to bedside and beyond y

    Get PDF
    Fifteen years elapsed between the discovery of the double helix (1953) and the first DNA sequencing (1968). Modern DNA sequencing began in 1977, with development of the chemical method of Maxam and Gilbert and the dideoxy method of Sanger, Nicklen and Coulson, and with the first complete DNA sequence (phage rX174), which demonstrated that sequence could give profound insights into genetic organization. Incremental improvements allowed sequencing of molecules>200 kb (human cytomegalovirus) leading to an avalanche of data that demanded computational analysis and spawned the field of bioinformatics. The US Human Genome Project spurred sequencing activity. By 1992 the first ā€˜sequencing factory ā€™ was established, and others soon followed. The first complete cellular genome sequences, from bacteria, appeared in 1995 and other eubacterial, archaebacterial and eukaryotic genomes were soon sequenced. Competition between the public Human Genome Project and Celera Genomics produced working drafts of the human genome sequence, published in 2001, but refinement and analysis of the human genome sequence will continue for the foreseeable future. New ā€˜massively parallel ā€™ sequencing methods are greatly increasing sequencing capacity, but further innovations are needed to achieve the ā€˜thousand dollar genome ā€™ that many feel is prerequisite to personalized genomic medicine. These advances will also allow new approaches to a variety of problems in biology, evolution and the environment

    Genetic Map of Bacteriophage [var phi]X174

    Get PDF
    Bacteriophage [var phi]X174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 Ɨ 10āˆ’4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome

    Mammalian DNA (Cytosine-5-)-methyltransferase Expressed in Escherichia coli , Purified and Characterized

    Get PDF
    Besides modulating specific DNA-protein interactions, methylated cytosine, frequently referred to as the fifth base of the genome, also influences DNA structure, recombination, transposition, repair, transcription, imprinting, and mutagenesis. DNA (cytosine-5-)-methyltransferase catalyzes cytosine methylation in eukaryotes. We have cloned and expressed this enzyme in Escherichia coli, purified it to apparent homogeneity, characterized its properties, and we have shown that it hemimethylates DNA. The cDNA for murine maintenance methyltransferase was reconstructed and cloned for direct expression in native form. Immunoblotting revealed a unique protein (M(r) = 190,000) not present in control cells. The mostly soluble overexpressed protein was purified by DEAE, Sephadex, and DNA cellulose chromatography. Peak methylating activity correlated with methyltransferase immunoblots. The purified enzyme preferentially transferred radioactive methyl moieties to hemimethylated DNA in assays and on autoradiograms. All of the examined properties of the purified recombinant DNA methyltransferase are consistent with the enzyme purified from mammalian cells. Further characterization revealed enhanced in vitro methylation of premethylated oligodeoxynucleotides. The cloning of hemimethyltransferase in E. coli should allow facilitated structure-function mutational analysis of this enzyme, studies of its biological effects in prokaryotes, and potential large scale methyltransferase production for crystallography, and it may have broad applications in maintaining the native methylated state of cloned DNA

    DNA-protein interaction at the replication termini of plasmid R6K.

    Get PDF
    Understanding the molecular mechanism of specific and polarized termination of DNA replication at a sequence-specific replication terminus requires detailed analyses of the interaction of terminator protein (ter) with specific DNA sequences (tau), constituting the replication terminus. Such analyses should provide the structural basis of the functional polarity of replication inhibition observed in vivo and in vitro at tau sites. With this objective in mind, we have purified the replication terminator protein of Escherichia coli to homogeneity and have analyzed the interaction of the protein with the replication termini of R6K, using chemical probes and by site-directed mutagenesis. The results show that one monomer of ter protein binds to a single tau site with an equilibrium dissociation constant of 5 x 10(-9) moles/liter. Furthermore, a combination of alkylation interference and protection, hydroxyradical footprinting, and site-directed mutagenesis has revealed the phosphate groups and base residues of the tau core sequence that make contacts with ter protein and those residues that are important for both DNA-protein interaction and for termination of replication in vivo. The overall picture that emerges from these analyses reveals that ter forms an asymmetric complex with a tau sequence. Thus, the asymmetric ter-tau complex provides a structural basis for the functional polarity of the arrest of a moving replication fork at a tau site

    The structure and function of the replication terminator protein of Bacillus subtilis: identification of the 'winged helix' DNA-binding domain.

    Get PDF
    The replication terminator protein (RTP) of Bacillus subtilis impedes replication fork movement in a polar mode upon binding as two interacting dimers to each of the replication termini. The mode of interaction of RTP with the terminus DNA is of considerable mechanistic significance because the DNA-protein complex not only localizes the helicase-blocking activity to the terminus, but also generates functional asymmetry from structurally symmetric protein dimers. The functional asymmetry is manifested in the polar impedance of replication fork movement. Although the crystal structure of the apoprotein has been solved, hitherto there was no direct evidence as to which parts of RTP were in contact with the replication terminus. Here we have used a variety of approaches, including saturation mutagenesis, genetic selection for DNA-binding mutants, photo cross-linking, biochemical and functional characterizations of the mutant proteins, and X-ray crystallography, to identify the regions of RTP that are either in direct contact with or are located within 11 angstroms of the replication terminus. The data show that the unstructured N-terminal arm, the alpha3 helix and the beta2 strand are involved in DNA binding. The mapping of amino acids of RTP in contact with DNA, confirms a 'winged helix' DNA-binding motif

    DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes

    Get PDF
    Essential genes are those indispensable for the survival of an organism, and their functions are therefore considered a foundation of life. Determination of a minimal gene set needed to sustain a life form, a fundamental question in biology, plays a key role in the emerging field, synthetic biology. Five years after we constructed DEG, a database of essential genes, DEG 5.0 has significant advances over the 2004 version in both the number of essential genes and the number of organisms in which these genes are determined. The number of prokaryotic essential genes in DEG has increased about 10-fold, mainly owing to genome-wide gene essentiality screens performed in a wide range of bacteria. The number of eukaryotic essential genes has increased more than 5-fold, because DEG 1.0 only had yeast ones, but DEG 5.0 also has those in humans, mice, worms, fruit flies, zebrafish and the plant Arabidopsis thaliana. These updates not only represent significant advances of DEG, but also represent the rapid progress of the essential-gene field. DEG is freely available at the website http://tubic.tju.edu.cn/deg or http://www.essentialgene.org

    Particulate air pollution and chronic ischemic heart disease in the eastern United States: a county level ecological study using satellite aerosol data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are several known factors that cause ischemic heart disease. However, the part played by air pollution still remains something of a mystery. Recent attention has focused on the chronic effect of particulate matter on heart disease. Satellite-derived aerosol optical depth (AOD) was found to be correlated with <it>PM</it><sub>2.5 </sub>in the eastern US. The objective of this study was to examine if there is an association between aerosol air pollution as indicated by AOD and chronic ischemic heart disease (CIHD) in the eastern US.</p> <p>Methods</p> <p>An ecological geographic study method was employed. Race and age standardized mortality rate (SMR) of CIHD was computed for each of the 2306 counties for the time period 2003ā€“2004. A mean AOD raster grid for the same period was derived from Moderate Resolution Imaging Spectrometer (MODIS) aerosol data and the average AOD was calculated for each county. A bivariate Moran's I scatter plot, a map of local indicator of spatial association (LISA) clusters, and three regression models (ordinary least square, spatial lag, and spatial error) were used to analyze the relationship between AOD and CIHD SMR.</p> <p>Results</p> <p>The global Moran's I value is 0.2673 (<it>p </it>= 0.001), indicating an overall positive spatial correlation of CIHD SMR and AOD. The entire study area is dominated by spatial clusters of AOD against SMR (high AOD and high SMR in the east, and low AOD and low SMR in the west) (permutations = 999, <it>p </it>= 0.05). Of the three regression models, the spatial error model achieved the best fit (R<sup>2 </sup>= 0.28). The effect of AOD is positive and significant (beta = 0.7774, p = 0.01).</p> <p>Conclusion</p> <p>Aerosol particle pollution has adverse effect on CIHD mortality risk in the eastern US. High risk of CIHD mortality was found in areas with elevated levels of outdoor aerosol air pollution as indicated by satellite derived AOD. The evidence of the association would support targeting of policy interventions on such areas to reduce air pollution levels. Remote sensing AOD data could be used as an alternative health-related indictor of air quality.</p

    Human and Organizational Issues for Resilient Communications

    Get PDF
    Human and organizational issues are able to create both vulnerabilities and resilience to threats. In this chapter, we investigate human and organizational factors, conducted through ethnographic studies of operators and sets of interviews with staff responsible for security, reliability and quality in two different organizations, which own and operate utility networks. Ethnography is a qualitative orientation to research that emphasizes the detailed observation and interview of people in naturally occurring settings. Our findings indicate that 'human error' forms the biggest threat to cyber-security and that there is a need for Security Operational Centres to document all cyber-security accidents. Also, we conclude that it will always be insufficient to assess mental security models in terms of their technical correctness, as it is sometimes more important to know how well they represent prevailing social issues and requirements. As a practical recommendation from this work, we suggest that utility organizations engage in penetration testing and perhaps other forms of vulnerability analysis, not only to discover specific vulnerabilities but also to learn more about the mental models they use
    • ā€¦
    corecore