12,471 research outputs found
A preliminary case study of the effect of shoe-wearing on the biomechanics of a horse’s foot
Horse racing is a multi-billion-dollar industry that has raised welfare concerns due to injured and euthanized animals. Whilst the cause of musculoskeletal injuries that lead to horse morbidity and mortality is multifactorial, pre-existing pathologies, increased speeds and substrate of the racecourse are likely contributors to foot disease. Horse hooves have the ability to naturally deform during locomotion and dissipate locomotor stresses, yet farriery approaches are utilised to increase performance and protect hooves from wear. Previous studies have assessed the effect of different shoe designs on locomotor performance; however, no biomechanical study has hitherto measured the effect of horseshoes on the stresses of the foot skeleton in vivo. This preliminary study introduces a novel methodology combining three-dimensional data from biplanar radiography with inverse dynamics methods and finite element analysis (FEA) to evaluate the effect of a stainless steel shoe on the function of a Thoroughbred horse's forefoot during walking. Our preliminary results suggest that the stainless steel shoe shifts craniocaudal, mediolateral and vertical GRFs at mid-stance. We document a similar pattern of flexion-extension in the PIP (pastern) and DIP (coffin) joints between the unshod and shod conditions, with slight variation in rotation angles throughout the stance phase. For both conditions, the PIP and DIP joints begin in a flexed posture and extend over the entire stance phase. At mid-stance, small differences in joint angle are observed in the PIP joint, with the shod condition being more extended than the unshod horse, whereas the DIP joint is extended more in the unshod than the shod condition. We also document that the DIP joint extends more than the PIP after midstance and until the end of the stance in both conditions. Our FEA analysis, conducted solely on the bones, shows increased von Mises and Maximum principal stresses on the forefoot phalanges in the shod condition at mid-stance, consistent with the tentative conclusion that a steel shoe might increase mechanical loading. However, because of our limited sample size none of these apparent differences have been tested for statistical significance. Our preliminary study illustrates how the shoe may influence the dynamics and mechanics of a Thoroughbred horse's forefoot during slow walking, but more research is needed to quantify the effect of the shoe on the equine forefoot during the whole stance phase, at faster speeds/gaits and with more individuals as well as with a similar focus on the hind feet. We anticipate that our preliminary analysis using advanced methodological approaches will pave the way for new directions in research on the form/function relationship of the equine foot, with the ultimate goal to minimise foot injuries and improve animal health and welfare
An Exploratory Study of Forces and Frictions affecting Large-Scale Model-Driven Development
In this paper, we investigate model-driven engineering, reporting on an
exploratory case-study conducted at a large automotive company. The study
consisted of interviews with 20 engineers and managers working in different
roles. We found that, in the context of a large organization, contextual forces
dominate the cognitive issues of using model-driven technology. The four forces
we identified that are likely independent of the particular abstractions chosen
as the basis of software development are the need for diffing in software
product lines, the needs for problem-specific languages and types, the need for
live modeling in exploratory activities, and the need for point-to-point
traceability between artifacts. We also identified triggers of accidental
complexity, which we refer to as points of friction introduced by languages and
tools. Examples of the friction points identified are insufficient support for
model diffing, point-to-point traceability, and model changes at runtime.Comment: To appear in proceedings of MODELS 2012, LNCS Springe
Graphene as a Novel Single Photon Counting Optical and IR Photodetector
Bilayer graphene has many unique optoelectronic properties , including a
tuneable band gap, that make it possible to develop new and more efficient
optical and nanoelectronic devices. We have developed a Monte Carlo simulation
for a single photon counting photodetector incorporating bilayer graphene. Our
results show that, conceptually it would be feasible to manufacture a single
photon counting photodetector (with colour sensitivity) from bilayer graphene
for use across both optical and infrared wavelengths. Our concept exploits the
high carrier mobility and tuneable band gap associated with a bilayer graphene
approach. This allows for low noise operation over a range of cryogenic
temperatures, thereby reducing the cost of cryogens with a trade off between
resolution and operating temperature. The results from this theoretical study
now enable us to progress onto the manufacture of prototype photon counters at
optical and IR wavelengths that may have the potential to be groundbreaking in
some scientific research applications.Comment: Conference Proceeding in Graphene-Based Technologies, 201
Novel Dynamical Resonances in Finite-Temperature Bose-Einstein Condensates
We describe a variety of intriguing mode-coupling effects which can occur in
a confined Bose-Einstein condensed system at finite temperature. These arise
from strong interactions between a condensate fluctuation and resonances of the
thermal cloud yielding strongly non-linear behaviour. We show how these
processes can be affected by altering the aspect ratio of the trap, thereby
changing the relevant mode-matching conditions. We illustrate how direct
driving of the thermal cloud can lead to significant shifts in the excitation
spectrum for a number of modes and provide further experimental scenarios in
which the dramatic behaviour observed for the mode at JILA (Jin {\it et
al.} 1997) can be repeated. Our theoretical description is based on a
successful second-order finite-temperature quantum field theory which includes
the full coupled dynamics of the condensate and thermal cloud and all relevant
finite-size effects
Modeling the buckling and delamination of thin films
I study numerically the problem of delamination of a thin film elastically
attached to a rigid substrate. A nominally flat elastic thin film is modeled
using a two-dimensional triangular mesh. Both compression and bending
rigidities are included to simulate compression and bending of the film. The
film can buckle (i.e., abandon its flat configuration) when enough compressive
strain is applied. The possible buckled configurations of a piece of film with
stripe geometry are investigated as a function of the compressive strain. It is
found that the stable configuration depends strongly on the applied strain and
the Poisson ratio of the film. Next, the film is considered to be attached to a
rigid substrate by springs that can break when the detaching force exceeds a
threshold value, producing the partial delamination of the film. Delamination
is induced by a mismatch of the relaxed configurations of film and substrate.
The morphology of the delaminated film can be followed and compared with
available experimental results as a function of model parameters.
`Telephone-cord', polygonal, and `brain-like' patterns qualitatively similar to
experimentally observed configurations are obtained in different parameter
regions. The main control parameters that select the different patterns are the
mismatch between film and substrate and the degree of in-plane relaxation
within the unbuckled regions.Comment: 8 pages, 10 figure
Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion
We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa
Regional variation in digital cushion pressure in the forefeet of horses and elephants
In this study, we seek to understand how the digital cushion morphologies evident in horse and elephant feet influence internal and external foot pressures. Our novel use of invasive blood pressure monitoring equipment, combined with a pressure pad and force plate, enabled measurements of (ex vivo) digital cushion pressure under increasing axial loads in seven horse and six elephant forefeet. Linear mixed effects models (LMER) revealed that internal digital cushion pressures increase under load and differ depending on region; elephant feet experienced higher magnitudes of medial digital cushion pressure, whereas horse feet experienced higher magnitudes of centralised digital cushion pressure. Direct comparison of digital cushion pressure magnitudes in both species, at equivalent loads relative to body weight, revealed that medial and lateral pressures increased more rapidly with load in elephant limbs. Within the same approximate region, internal pressures exceeded external, palmar pressures (on the sole of the foot), supporting previous Finite Element (FE) predictions. High pressures and large variations in pressure may relate to the development of foot pathology, which is a major concern in horses and elephants in a captive/domestic environment
Electron Temperature of Ultracold Plasmas
We study the evolution of ultracold plasmas by measuring the electron
temperature. Shortly after plasma formation, competition between heating and
cooling mechanisms drives the electron temperature to a value within a narrow
range regardless of the initial energy imparted to the electrons. In agreement
with theory predictions, plasmas exhibit values of the Coulomb coupling
parameter less than 1.Comment: 4 pages, plus four figure
- …