133 research outputs found

    Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts

    Get PDF
    A range of graphitic oxides have been utilised as metal free carbocatalysts for the low temperature oxidation of cyclohexene. The activity of the catalysts was correlated with the amount of surface oxygen on the graphitic oxide. In the case of cyclohexene oxidation, major selectivity is observed to allylic oxidation products. This is in contrast to the epoxide being the major product in linear alkene oxidation. This selectivity was maintained over long reaction times and at a conversion of above 50 %. Only small amounts of epoxide were observed, which eventually decreases at higher conversion due to hydrolysis to cyclohexane diol. The similarity between the non-catalysed and the catalysed product distribution suggests that these catalysts act as a solid initiator, and the role of the graphitic oxide is to decrease the lengthy induction period observed in the blank non-catalysed reaction

    The low temperature solvent-free aerobic oxidation of cyclohexene to cyclohexane diol over highly active Au/Graphite and Au/Graphene catalysts

    Get PDF
    The selectivity and activity of gold-catalysts supported on graphite and graphene have been compared in the oxidation of cyclohexene. These catalysts were prepared via impregnation and sol immobilisation methods, and tested using solventless and radical initiator-free reaction conditions. The selectivity of these catalysts has been directed towards cyclohexene epoxide using WO3 as a co-catalyst and further to cyclohexane diol by the addition of water, achieving a maximum selectivity of 17% to the diol. The sol immobilisation catalysts were more reproducible and far more active, however, selectivity towards the diol was lower than for the impregnation catalyst. The results suggest that formation of cyclohexane diol through solventless oxidation of cyclohexene is limited by a number of factors, such as the formation of an allylic hydroperoxyl species as well as the amount of in situ generated water

    Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions

    Get PDF
    The aerobic oxidation of cinnamyl alcohol in toluene under autoxidation conditions has been studied using a range of 1 wt% Au–Pd/TiO2 catalysts. The catalysts have been studied to determine the effect of preparation method (impregnation and sol immobilisation) and metal ratio on the conversion of cinnamyl alcohol and the selectivity to cinnamaldehyde. The catalysts prepared by sol-immobilisation demonstrate higher selectivity to the desired aldehyde than the analogous impregnation materials. The most active catalyst was found to be 0.75 wt% Au–0.25 wt% Pd/TiO2 prepared by sol-immobilisation and this demonstrates the importance of metal ratio optimisation in this catalytic process. Furthermore, this metal ratio was found to be most stable under the reactions conditions with little change observed over multiple uses

    The role of Mg(OH)2 in the so-called 'base-free' oxidation of glycerol with AuPd catalysts

    Get PDF
    Mg(OH)2 and Mg(OH)2 containing materials can provide excellent performance as supports for AuPd nanoparticles for oxidation of glycerol in the absence of base, which is considered to be a result of additional basic sites on the support's surface. However, its influence on the reaction solution is not generally discussed. In this paper, we examine, in detail, the relationship between the basic Mg(OH)2 support and AuPd nanoparticles using four types of catalyst, where the physical interaction between Mg(OH)2 and AuPd was adjusted. It was found that the activity of the AuPd nanoparticles increased with the amount of Mg(OH)2 added under base-free conditions, regardless of its interaction with the noble metals. In order to investigate how Mg(OH)2 affected glycerol oxidation, detailed information about the performance of AuPd/Mg(OH)2, physically mixed (AuPd/C+Mg(OH)2) and (AuPd/C+NaHCO3) was obtained and compared. Furthermore, NaOH and Mg(OH)2 were added during the reaction using AuPd/C. All these results indicate that the distinctive and outstanding performance of Mg(OH)2 supported catalysts in base-free condition is in fact directly related to its ability to affect the pH during the reaction and as such, assists with the initial activation of the primary alcohol which is considered to be the rate determining step in the reactionperformance of Mg(OH)2 supported catalysts in base-free condition could be correlated to its ability to affect the pH during the reaction

    Oxidative carboxylation of 1-decene to 1,2-decylene carbonate

    Get PDF
    Cyclic carbonates are valuable chemicals for the chemical industry and thus, their efficient synthesis is essential. Commonly, cyclic carbonates are synthesised in a two-step process involving the epoxidation of an alkene and a subsequent carboxylation to the cyclic carbonate. To couple both steps into a direct oxidative carboxylation reaction would be desired from an economical view point since additional work-up procedures can be avoided. Furthermore, the efficient sequestration of CO2, a major greenhouse gas, would also be highly desirable. In this work, the oxidative carboxylation of 1-decene is investigated using supported gold catalysts for the epoxidation step and tetrabutylammonium bromide in combination with zinc bromide for the cycloaddition of carbon dioxide in the second step. The compatibility of the catalysts for both steps is explored and a detailed study of catalyst deactivation using X-ray photoelectron spectroscopy and scanning electron microscopy is reported. Promising selectivity of the 1,2-decylene carbonate is observed using a one-pot two-step approach

    Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    Get PDF
    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal

    How much can donor/acceptor-substitution change the responses of long push-pull systems to DC fields?

    Full text link
    Mathematical arguments are presented that give a unique answer to the question in the title. Subsequently, the mathematical analysis is extended using results of detailed model calculations that, in addition, throw further light on the consequences of the analysis. Finally, through a comparison with various recent studies, many of the latter are given a new interpretation.Comment: Accepted by Chem. Phys. Let

    Can gold be an effective catalyst for the Deacon reaction?

    Get PDF
    The Deacon reaction is an important industrial process for the oxidation of hydrogen chloride, thereby enabling chlorine to be recycled. As gold is an efficient catalyst for reactions involving hydrogen chloride and oxygen, we have studied the use of gold as a potential catalyst for the Deacon reaction. Unfortunately, gold displays only limited activity; however, this is markedly increased if hydrogen is cofed as a reactant
    • …
    corecore