41 research outputs found

    A Thermodynamic Interpretation of Time for Superstring Rolling Tachyons

    Full text link
    Rolling tachyon backgrounds, arising from open strings on unstable branes in bosonic string theory, can be related to a simple statistical mechanical model - Coulomb gas of point charges in two dimensions confined to a circle, the Dyson gas. In this letter we describe a statistical system that is dual to non-BPS branes in superstring theory. We argue that even though the concept of time is absent in the statistical dual sitting at equilibrium, the notion of time can emerge at the large number of particles N→∞N \to \infty limit.Comment: 6 pages, 3 figures, v2: reference added, v3: minor clarification, version to appear in journa

    Scattering theory of the chiral magnetic effect in a Weyl semimetal: Interplay of bulk Weyl cones and surface Fermi arcs

    Get PDF
    We formulate a linear response theory of the chiral magnetic effect in a finite Weyl semimetal, expressing the electrical current density jj induced by a slowly oscillating magnetic field BB or chiral chemical potential μ\mu in terms of the scattering matrix of Weyl fermions at the Fermi level. Surface conduction can be neglected in the infinite-system limit for δj/δμ\delta j/\delta \mu, but not for δj/δB\delta j/\delta B: The chirally circulating surface Fermi arcs give a comparable contribution to the bulk Weyl cones no matter how large the system is, because their smaller number is compensated by an increased flux sensitivity. The Fermi arc contribution to μ−1δj/δB\mu^{-1}\delta j/\delta B has the universal value (e/h)2(e/h)^2, protected by chirality against impurity scattering --- unlike the bulk contribution of opposite sign.Comment: 8 pages, 8 figures; V2: added references with discussion; V3: To be published in the Focus Issue on "Topological semimetals" of New Journal of Physic

    Topologically protected charge transfer along the edge of a chiral p\textit{p}-wave superconductor

    Get PDF
    The Majorana fermions propagating along the edge of a topological superconductor with px+ipyp_x+ip_y pairing deliver a shot noise power of 12×e2/h\frac{1}{2}\times e^2/h per eV of voltage bias. We calculate the full counting statistics of the transferred charge and find that it becomes trinomial in the low-temperature limit, distinct from the binomial statistics of charge-ee transfer in a single-mode nanowire or charge-2e2e transfer through a normal-superconductor interface. All even-order correlators of current fluctuations have a universal quantized value, insensitive to disorder and decoherence. These electrical signatures are experimentally accessible, because they persist for temperatures and voltages large compared to the Thouless energy.Comment: 5 pages, 4 figures. v3 [post-publication]: added an appendix on the effect of a tunnel barrier at the normal-superconductor contac

    Dynamics of disentanglement, density matrix and coherence in neutrino oscillations

    Full text link
    In charged current weak interaction processes, neutrinos are produced in an entangled state with the charged lepton. This correlated state is disentangled by the measurement of the charged lepton in a detector at the production site. We study the dynamical aspects of disentanglement, propagation and detection, in particular the conditions under which the disentangled state is a coherent superposition of mass eigenstates. The appearance and disappearance far-detection processes are described from the time evolution of this disentangled "collapsed" state. The familiar quantum mechanical interpretation and factorization of the detection rate emerges when the quantum state is disentangled on time scales \emph{much shorter} than the inverse oscillation frequency, in which case the final detection rate factorizes in terms of the usual quantum mechanical transition probability provided the final density of states is insensitive to the neutrino energy difference. We suggest \emph{possible} corrections for short-baseline experiments. If the charged lepton is unobserved, neutrino oscillations and coherence are described in terms of a reduced density matrix obtained by tracing out an un-observed charged lepton. The diagonal elements in the mass basis describe the production of mass eigenstates whereas the off diagonal ones provide a measure of coherence. It is shown that coherences are of the same order of the diagonal terms on time scales up to the inverse oscillation frequency, beyond which the coherences oscillate as a result of the interference between mass eigenstates.Comment: 19 pages, v.2: discussions adde

    Systematics of Moduli Stabilization, Inflationary Dynamics and Power Spectrum

    Get PDF
    We study the scalar sector of type IIB superstring theory compactified on Calabi-Yau orientifolds as a place to find a mechanism of inflation in the early universe. In the large volume limit, one can stabilize the moduli in stages using perturbative method. We relate the systematics of moduli stabilization with methods to reduce the number of possible inflatons, which in turn lead to a simpler inflation analysis. Calculating the order-of-magnitude of terms in the equation of motion, we show that the methods are in fact valid. We then give the examples where these methods are used in the literature. We also show that there are effects of non-inflaton scalar fields on the scalar power spectrum. For one of the two methods, these effects can be observed with the current precision in experiments, while for the other method, the effects might never be observable.Comment: 20 pages, JHEP style; v.2 and v.3: typos fixed, discussion and references adde

    Holographic models of de Sitter QFTs

    Full text link
    We describe the dynamics of strongly coupled field theories in de Sitter spacetime using the holographic gauge/gravity duality. The main motivation for this is to explore the possibility of dynamical phase transitions during cosmological evolution. Specifically, we study two classes of theories: (i) conformal field theories on de Sitter in the static patch which are maintained in equilibrium at temperatures that may differ from the de Sitter temperature and (ii) confining gauge theories on de Sitter spacetime. In the former case we show the such states make sense from the holographic viewpoint in that they have regular bulk gravity solutions. In the latter situation we add to the evidence for a confinement/deconfinement transition for a large N planar gauge theory as the cosmological acceleration is increased past a critical value. For the field theories we study, the critical acceleration corresponds to a de Sitter temperature which is less than the Minkowski space deconfinement transition temperature by a factor of the spacetime dimension.Comment: 35 pages, LaTeX, 4 figures, v2: refs adde

    Neutrino oscillations and uncertainty relations

    Full text link
    We show that coherent flavor neutrino states are produced (and detected) due to the momentum-coordinate Heisenberg uncertainty relation. The Mandelstam-Tamm time-energy uncertainty relation requires non-stationary neutrino states for oscillations to happen and determines the time interval (propagation length) which is necessary for that. We compare different approaches to neutrino oscillations which are based on different physical assumptions but lead to the same expression for the neutrino transition probability in standard neutrino oscillation experiments. We show that a Moessbauer neutrino experiment could allow to distinguish different approaches and we present arguments in favor of the 163Ho-163Dy system for such an experiment.Comment: Some small changes in section 2, results unchanged. Added referenc

    Enhanced Non-Gaussianity from Excited Initial States

    Full text link
    We use the techniques of effective field theory in an expanding universe to examine the effect of choosing an excited inflationary initial state built over the Bunch-Davies state on the CMB bi-spectrum. We find that even for Hadamard states, there are unexpected enhancements in the bi-spectrum for certain configurations in momentum space due to interactions of modes in the early stages of inflation. These enhancements can be parametrically larger than the standard ones and are potentially observable in current and future data. These initial state effects have a characteristic signature in ll-space which distinguishes them from the usual contributions, with the enhancement being most pronounced for configurations corresponding to flattened triangles for which two momenta are collinear.Comment: 33 pages, 1 figure. Refs added and minor addition

    Astrophysical and Cosmological Implications of Large Volume String Compactifications

    Full text link
    We study the spectrum, couplings and cosmological and astrophysical implications of the moduli fields for the class of Calabi-Yau IIB string compactifications for which moduli stabilisation leads to an exponentially large volume V ~ 10^{15} l_s^6 and an intermediate string scale m_s ~ 10^{11}GeV, with TeV-scale observable supersymmetry breaking. All K\"ahler moduli except for the overall volume are heavier than the susy breaking scale, with m ~ ln(M_P/m_{3/2}) m_{3/2} ~ (\ln(M_P/m_{3/2}))^2 m_{susy} ~ 500 TeV and, contrary to standard expectations, have matter couplings suppressed only by the string scale rather than the Planck scale. These decay to matter early in the history of the universe, with a reheat temperature T ~ 10^7 GeV, and are free from the cosmological moduli problem (CMP). The heavy moduli have a branching ratio to gravitino pairs of 10^{-30} and do not suffer from the gravitino overproduction problem. The overall volume modulus is a distinctive feature of these models and is an M_{planck}-coupled scalar of mass m ~ 1 MeV and subject to the CMP. A period of thermal inflation can help relax this problem. This field has a lifetime ~ 10^{24}s and can contribute to dark matter. It may be detected through its decays to 2\gamma or e^+e^-. If accessible the e^+e^- decay mode dominates, with Br(\chi \to 2 \gamma) suppressed by a factor (ln(M_P/m_{3/2}))^2. We consider the potential for detection of this field through different astrophysical sources and find that the observed gamma-ray background constrains \Omega_{\chi} <~ 10^{-4}. The decays of this field may generate the 511 keV emission line from the galactic centre observed by INTEGRAL/SPI.Comment: 31 pages, 2 figures; v2. refs adde
    corecore