55 research outputs found

    Ta/TiO2-and Nb/TiO2-Mixed Oxides as Efficient Solar Photocatalysts: Preparation, Characterization, and Photocatalytic Activity

    Get PDF
    Ta/TiO2- and Nb/TiO2-mixed oxides photocatalysts were prepared by simple impregnation method at different TiO2 : Nb or Ta mass ratios of 1 : 0.1, 1 : 0.5, and 1 : 1, followed by calcination at 500∘C. The prepared powders have been characterized by XRD, XPS, UV-Vis spectra, and SEM. The photocatalytic activity was evaluated under natural solar light for decolorization and mineralization of azo dye Orange II solution. The results showed that Nb/TiO2- and Ta/TiO2-mixed oxides have higher activity than the untreated TiO2 under natural solar light. The maximum activity was observed for Nb/TiO2 sample (at mass ratio of 1 : 0.1), which is characterized by the smallest crystalline size (17.79 nm). Comparing with the untreated TiO2, the solar decolorization and mineralization rates improved by about 140% and 237%, respectively, and the band gap reduced to 2.80 eV. The results suggest that the crystal lattices of TiO2 powder are locally distorted by incorporating Nb5+ species into TiO2, forming a new band energy structure, which is responsible for the absorption in the visible region. Unlike Ta/TiO2, the Nb/TiO2-mixed oxides can prevent the grain size growth of the treated TiO2, which is important to achieve high solar photoactivity

    Solar photocatalytic degradation of 4-chlorophenol: Mechanism and kinetic modelling

    Get PDF
    The present study reports a mechanism and kinetic model of solar photocatalytic degradation of 4-chlorophenol (4-CP) and its intermediates based on the experimental results. Three intermediate compounds hydroquinone (HQ), 4-chlorocatechol (4cCat) and phenol were found during the solar degradation of different 4-CP concentrations using 0.5 g/L TiO2 as a photocatalyst. In order to obtain more details about the photocatalytic reaction pathway and the kinetic model, set of experiments were carried out using the major intermediates (HQ and 4cCat) as model reactants. To minimise the number of variables and give more accuracy to the kinetic model, the adsorption constants of 4-CPand its intermediates were obtained experimentally. The reaction mechanism for the photocatalytic degradation of 4-CP is proposed. The proposed model predicts well the concentrations of 4-CP and its by-products during the solar photocatalytic degradation at different initial concentrations. The model provides a very good fit of the experimental data and works for a wide range of 4-CP initial concentrations (25–100 mg/L)

    Enhancement of CO2 biofixation and lipid production by Chlorella vulgaris using coloured polypropylene film

    Get PDF
    Chlorella vulgaris was cultivated with light at different wavelengths (λmax) and irradiation intensities (I) by applying a coloured tape (CT) as a simple, inexpensive light filter. C. vulgaris was cultivated in a standard medium using blue (CTB), green (CTG), red (CTR), yellow (CTY) and white (CTW) CT to filter the light, as well the unfiltered light (U). The influence of λmax and I on specific growth rate (μ), nutrient removal efficiency (% RE of total nitrogen, TN, and phosphorus, TP), CO2 fixation rate (RC) and lipid productivity (Plipid) were evaluated. The highest biomass concentration Xmax of 2.26 g L−1 was measured for CTW with corresponding μ, TN and TP RE, RC and Plipid values of 0.95 d−1, 92% and 100%, 0.67 g L−1 d−1 and 83.6 mg L−1 d−1, respectively. The normalised μ and Plipid for U were significantly lower than in CTW of 33–50% and 75%, respectively. The corresponding non-normalised parameter values for CTB were significantly lower at 0.45 d−1, 0.18 g L−1, 15% and 37%, 0.03 g L−1 d−1 and 1.2 mg L−1 d−1. Results suggest a significant impact of I and λmax, with up to a 50% increase in growth and nutrient RE from optimising these parameters

    The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater

    Get PDF
    The presence of heavy metals in water bodies is linked to the increasing number of industries and populations. This has serious consequences for the quality of human health and the environment. In accordance with this issue, water and wastewater treatment technologies including ion exchange, chemical extraction, and hydrolysis should be conducted as a first water purification stage. However, the sequestration of these toxic substances tends to be expensive, especially for large scale treatment methods that require tedious control and have limited efficiency. Therefore, adsorption methods using adsorbents derived from biomass represent a promising alternative due to their great efficiency and abundance. Algal and seaweed biomass has appeared as a sustainable solution for environmentally friendly adsorbent production. This review further discusses recent developments in the use of algal and seaweed biomass as potential sorbent for heavy metal bioremediation. In addition, relevant aspects like metal toxicity, adsorption mechanism, and parameters affecting the completion of adsorption process are also highlighted. Overall, the critical conclusion drawn is that algae and seaweed biomass can be used to sustainably eliminate heavy metals from wastewater

    The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement

    Get PDF
    The use of microalgae culture technology (MCT) for mitigating CO2 emissions from flue gases and nutrient discharges from wastewater whilst generating a biofuel product is considered with reference to the cost benefit offered. The review examines the most recent MCT literature (post 2010) focused on the algal biomass or biofuel production cost. The analysis reveals that, according to published studies, biofuel cost follows an approximate inverse relationship with algal or lipid productivity with a minimum production cost of $1 L−1 attained under representative conditions. A 35–86% cost reduction is reported across all studies from the combined harnessing of CO2 and nutrients from waste sources. This compares with 12–27% for obviating fertiliser procurement through using a wastewater nutrient source (or else recycling the liquor from the extracted algal biomass waste), and 19–39% for CO2 fixation from a flue gas feed. Notwithstanding the above, economic competitiveness with mineral fuels appears to be attainable only under circumstances which also feature: a) The inclusion of cost and environmental benefits from wastewater treatment (such as the energy and/or greenhouse gas emissions benefit from nutrient and CO2 discharge abatement), and/or a) Multiple installations over an extended geographic region where flue gas and wastewater sources are co-located

    Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor

    Get PDF
    The increase in atmospheric CO2 concentration and the release of nutrients from wastewater treatment plants (WWTPs) are environmental issues linked to several impacts on ecosystems. Numerous technologies have been employed to resolves these issues, nonetheless, the cost and sustainability are still a concern. Recently, the use of microalgae appears as a cost-effective and sustainable solution because they can effectively uptake CO2 and nutrients resulting in biomass production that can be processed into valuable products. In this study single (Spirulina platensis (SP.PL) and mixed indigenous microalgae (MIMA) strains were employed, over a 20-month period, for simultaneous removal of CO2 from flue gases and nutrient from wastewater under ambient conditions of solar irradiation and temperature. The study was performed at a pilot scale photo-bioreactor and the effect of feed CO2 gas concentration in the range (2.5–20%) on microalgae growth and biomass production, carbon dioxide bio-fixation rate, and the removal of nutrients and organic matters from wastewater was assessed. The MIMA culture performed significantly better than the monoculture, especially with respect to growth and CO2 bio-fixation, during the mild season; against this, the performance was comparable during the hot season. Optimum performance was observed at 10% CO2 feed gas concentration, though MIMA was more temperature and CO2 concentration sensitive. MIMA also provided greater removal of COD and nutrients (~83% and >99%) than SP.PL under all conditions studied. The high biomass productivities and carbon bio-fixation rates (0.796–0.950 gdw·L−1·d−1 and 0.542–1.075 gC·L−1·d−1 contribute to the economic sustainability of microalgae as CO2 removal process. Consideration of operational energy revealed that there is a significant energy benefit from cooling to sustain the highest productivities on the basis of operating energy alone, particularly if the indigenous culture is used

    Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media

    No full text
    TiO2 photocatalyst hybridized with new multilamellar vesicles (MLVs) mesoporous ZSM-5 substrate (TiO2/ZSM-5) were prepared by the direct templating technique for decolorization and minerlization of methyl orange (MO) dye effluent. The synthesized materials were characterized by X-ray diffraction (XRD), Field-emission scanning electron microscopy (FE-SEM), Fourier-transformed infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). It was found that the specific surface area (SBET) of the synthesized TiO2/ZSM-5 was 1151 m2 g−1. The results also indicated that the zeolite structure conserves mesoporous structure after the removal of surfactant templates. Several parameters were also investigated such as the effect of catalyst types, pH, adsorption/photocatalysis phenomenon and contact time. Under 180 min solar irradiation, MO dye was efficiently decolorized and mineralized to be 99.55% and 99%, respectively, at an initial MO concentration of 20 mg L−1. Furthermore, the photocatalysis kinetic fit the pseudo-second-order model well and a great potential for saving energy associated with its recyclability. Therefore, the synthesized TiO2/ZSM-5 could be used as a promosing photocatalysis for fast removal and treatment of coloured wastewater
    • …
    corecore