20 research outputs found

    Intriguing complex magnetism of Co in RECoAsO (RE=La, Nd and Sm)

    Full text link
    We synthesized bulk polycrystalline samples of RECoAsO (RE=La, Nd and Sm) by solid state reaction route in an evacuated sealed quartz tube. All these compounds are crystallized in a tetragonal structure with space group P4/nmm. The Co, in these compounds is in itinerant ferromagnetic state with its paramagnetic moment above 1.5 microB and the same orders ferromagnetically (FM) with small saturation moment of around 0.20 microB below say 80K. This bulk intrinsic magnetism of Co changes dramatically when nonmagnetic La is changed by magnetic Sm and Nd. Although the itinerant ferromagnetism occurs below 80-100K with small saturation moment, typical anti-ferromagnetic (AFM) transitions (TN1, TN2) are observed at 57K and 45K for Sm and at 69K and 14K for Nd. The transition of Co spins from FM to AFM, for magnetic Sm and Nd in RECoAsO is both field and temperature dependent. For applied fields below 100Oe, both TN1 and TN2 are seen, with intermediate fields below 1-2kOe only TN1 and above say 5kOe the AFM transition is not observed. This is evidenced in isothermal magnetization (MH) plots as well. It is clear that Sm/Nd magnetic moments interact with the ordered Co spins in adjacent layer and thus transforms the FM ordering to AFM. All the studied compounds are metallic in nature, and their magneto-transport R(T)H follows the temperature and field dependent FM-AFM transition of ordered Co spins.Comment: 11 pages text + Figs: Queries to - [email protected] (www.freewebs.com/vpsawana

    Performance Analysis of Sensing-based Semi-Persistent Scheduling (SB-SPS) MAC Protocol for C-V2X

    Get PDF
    Sensing-based Semi-Persistent Scheduling (SB-SPS) MAC protocol is proposed as part of the latest cellular vehicle to everything (C-V2X) standard for medium access between vehicles. As C-V2X uses LTE based frame structure, mode 4 of the C-V2X standard uses SB-SPS to allocate resource blocks effectively. C-V2X shows great potential for the future as it brings many improvements such as enhanced range, reliability, and the ability to support and evolve with emerging technologies such as 5G. In this article, the SB-SPS protocol’s performance was analyzed in different scenarios using OMNET++, SUMO, and Veins simulator. Different vehicle speeds and densities were used to observe the effect on packet loss and throughput. It was found that as packet loss decreased, throughput increased when the mobility of vehicles decreased. The effects of changing some important parameters of SB-SPS were also observed. The results showed that while parameters such as increasing the number of subchannels increased the packet delivery ratio (PDR), the change in the probability of resource reselection parameter did not affect the PDR

    Design and Fabrication of a Fast Response Resistive-Type Humidity Sensor Using Polypyrrole (Ppy) Polymer Thin Film Structures

    No full text
    In this research article, an organic polymer based polypyrrole (Ppy) composite material has been synthesized and analyzed for the design and fabrication purposes of a fast-responsive, highly sensitive, and an economical resistive-type novel humidity detection sensor. This humidity sensor most suitably serves the purpose for industrial humidity (i.e., values ranging from low to high) detection applications. First, a polypyrrole composite material (a mixture of polypyrrole, polypyrrole-NiO, polypyrrole-CeO2, and polypyrrole-Nb2O5) has been synthesized by chemical oxidative polymerization method, and then is treated at various temperatures, i.e., 100, 150 and 200 °C, respectively. After this treatment, the synthesized samples were then characterized by using FTIR, SEM, and DTA/TGA techniques for analyzing humidity sensing properties. The polypyrrole samples with the best morphological structure and properties were then incorporated on interdigitated electrodes. For the fabrication purposes of this thin film structure, at first a few drops of polyvinyl alcohol (PVA) were placed over interdigitated electrodes (IDE) and then the synthesized polypyrrole composite was uniformly deposited in the form of a thin film over it. The plots show that this is a good resistive-type humidity detection device for the relative humidity range of 30% to 90%. The response and recovery times of this newly fabricated humidity sensor were reported to be the same as 128 s at room temperature. Additionally, the stability and the repeatability response behavior of this Ppy sensor were verified up to five cycles of multiple repetitions. This presents an excellent stability and repeatability performance of the sensor. Furthermore, the capacitances versus humidity response and recovery properties of the designed sensor were studied too. This illustrates an excellent capacitive verses humidity response and shows a linear and an active behavior. Lastly, the experimental result proves that polypyrrole composite thin film shows a reasonable best performance up to a temperature of 100 °C

    Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data

    No full text
    Land use–land cover (LULC) alteration is primarily associated with land degradation, especially in recent decades, and has resulted in various harmful changes in the landscape. The normalized difference vegetation index (NDVI) has the prospective capacity to classify the vegetative characteristics of many ecological areas and has proven itself useful as a remote sensing (RS) tool in recording vegetative phenological aspects. Likewise, the normalized difference built-up index (NDBI) is used for quoting built-up areas. The current research objectives include identification of LULC, NDVI, and NDBI changes in Jhelum District, Punjab, Pakistan, during the last 30 years (1990–2020). This study targeted five major LULC classes: water channels, built-up area, barren land, forest, and cultivated land. Satellite imagery classification tools were used to identify LULC changes in Jhelum District, northern Punjab, Pakistan. The perception data about the environmental variations as conveyed by the 500 participants (mainly farmers) were also recorded and analyzed. The results depict that the majority of farmers (54%) believe in the appearance of more drastic changes such as less rainfall, drought, and decreased water availability for irrigation during 2020 compared to 30 years prior. Overall accuracy assessment of imagery classification was 83.2% and 88.8% for 1990, 88.1% and 85.7% for 2000, 86.5% and 86.7% for 2010, and 85.6% and 87.3% for 2020. The NDVI for Jhelum District was the highest in 1990 at +0.86 and the lowest in 2020 at +0.32; similarly, NDBI values were the highest in 2020 at +0.72 and the lowest in 1990 at −0.36. LULC change showed a clear association with temperature, NDBI, and NDVI in the study area. At the same time, variations in the land area of barren soil, vegetation, and built-up from 1990 to 2020 were quite prominent, possibly resulting in temperature increases, reduction in water for irrigation, and changing rainfall patterns. Farmers were found to be quite responsive to such climatic variations, diverting to framing possible mitigation approaches, but they need government assistance. The findings of this study, especially the causes and impacts of rapid LULC variations in the study area, need immediate attention from related government departments and policy makers
    corecore