23 research outputs found

    Evaluation de la réforme de la maturité 1995 (EVAMAR). Rapport final de la phase II

    Full text link

    Star partitions of perfect graphs

    No full text
    The partition of graphs into nice subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-hard cases, for example, on grid graphs and chordal graphs

    Exact algorithms for exact satisfiability and number of perfect matchings

    No full text
    We present exact algorithms with exponential running times for variants of n-element set cover problems, based on divide-and-conquer and on inclusion exclusion characterizations. We show that the Exact Satisfiability problem of size l with m clauses can be solved in time 2(m)l(O(1)) and polynomial space. The same bounds hold for counting the number of solutions. As a special case, we can count the number of perfect matchings in an n-vertex graph in time 2(n)n(O(1)) and polynomial space. We also show how to count the number of perfect matchings in time O(1.732(n)) and exponential space. We give a number of examples where the running time can be further improved if the hypergraph corresponding to the set cover instance has low pathwidth. This yields exponential-time algorithms for counting k-dimensional matchings, Exact Uniform Set Cover, Clique Partition, and Minimum Dominating Set in graphs of degree at most three. We extend the analysis to a number of related problems such as TSP and Chromatic Number
    corecore