6 research outputs found

    Identification of women with an increased risk of developing radiation-induced breast cancer: A case only study

    Get PDF
    Introduction: Radiation exposure at a young age is one of the strongest risk factors for breast cancer. Germline mutations in genes involved in the DNA-damage repair pathway (DDRP) may render women more susceptible to radiation-induced breast cancer. Methods: We evaluated the contribution of germline mutations in the DDRP genes BRCA1, BRCA2, CHEK2 and ATM to the risk of radiation-induced contralateral breast cancer (CBC). The germline mutation frequency was assessed, in a case-only study, in women who developed a CBC after they had a first breast cancer diagnosed before the age of 50 years, and who were (n = 169) or were not (n = 78) treated with radiotherapy for their first breast tumour. Results: We identified 27 BRCA1, 5 BRCA2, 15 CHEK2 and 4 truncating ATM germline mutation carriers among all CBC patients tested (21%). The mutation frequency was 24.3% among CBC patients with a history of radiotherapy, and 12.8% among patients not irradiated for the first breast tumour (odds ratio 2.18 (95% confidence interval 1.03 to 4.62); p = 0.043). The association between DDRP germline mutation carriers and risk of radiation-induced CBC seemed to be strongest in women who developed their second primary breast tumour at least 5 years after radiotherapy. Th

    The spectrum of ATM missense variants and their contribution to contralateral breast cancer

    Get PDF
    Heterozygous carriers of ATM mutations are at increased risk of breast cancer. In this case-control study, we evaluated the significance of germline ATM missense variants to the risk of contralateral breast cancer (CBC). We have determined the spectrum and frequency of ATM missense variants in 443 breast cancer patients diagnosed before age 50, including 247 patients who subsequently developed CBC. Twenty-one per cent of the women with unilateral breast cancer and 17% of the women with CBC had at least one ATM germline missense variant, indicating no significant difference in variant frequency between these two groups. We have found that carriers of an ATM missense mutation, who were treated with radiotherapy for the first breast tumour, developed their second tumour on average in a 92-month interval compared to a 136-month mean interval for those CBC patients who neither received RT nor carried a germline variant, (p = 0.029). Our results indicate that the presence of ATM variants does not have a major impact on the overall risk of CBC. However, the combination of RT and (certain) ATM missense variants seems to accelerate tumour development

    Identification of women with an increased risk of developing radiation-induced breast cancer: a case only study

    Get PDF
    Introduction: Radiation exposure at a young age is one of the strongest risk factors for breast cancer. Germline mutations in genes involved in the DNA-damage repair pathway (DDRP) may render women more susceptible to radiation-induced breast cancer. Methods: We evaluated the contribution of germline mutations in the DDRP genes BRCA1, BRCA2, CHEK2 and ATM to the risk of radiation-induced contralateral breast cancer (CBC). The germline mutation frequency was assessed, in a case-only study, in women who developed a CBC after they had a first breast cancer diagnosed before the age of 50 years, and who were (n = 169) or were not (n = 78) treated with radiotherapy for their first breast tumour. Results: We identified 27 BRCA1, 5 BRCA2, 15 CHEK2 and 4 truncating ATM germline mutation carriers among all CBC patients tested (21%). The mutation frequency was 24.3% among CBC patients with a history of radiotherapy, and 12.8% among patients not irradiated for the first breast tumour (odds ratio 2.18 (95% confidence interval 1.03 to 4.62); p = 0.043). The association between DDRP germline mutation carriers and risk of radiation-induced CBC seemed to be strongest in women who developed their second primary breast tumour at least 5 years after radiotherapy. Th

    Functional Screen for microRNAs Suppressing Anchorage-Independent Growth in Human Cervical Cancer Cells

    No full text
    The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96-and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development
    corecore