15 research outputs found

    Quantum black holes from null expansion operators

    Full text link
    Using a recently developed quantization of spherically symmetric gravity coupled to a scalar field, we give a construction of null expansion operators that allow a definition of general, fully dynamical quantum black holes. These operators capture the intuitive idea that classical black holes are defined by the presence of trapped surfaces, that is surfaces from which light cannot escape outward. They thus provide a mechanism for classifying quantum states of the system into those that describe quantum black holes and those that do not. We find that quantum horizons fluctuate, confirming long-held heuristic expectations. We also give explicit examples of quantum black hole states. The work sets a framework for addressing the puzzles of black hole physics in a fully quantized dynamical setting.Comment: 5 pages, version to appear in CQ

    Quantum resolution of black hole singularities

    Full text link
    We study the classical and quantum theory of spherically symmetric spacetimes with scalar field coupling in general relativity. We utilise the canonical formalism of geometrodynamics adapted to the Painleve-Gullstrand coordinates, and present a new quantisation of the resulting field theory. We give an explicit construction of operators that capture curvature properties of the spacetime and use these to show that the black hole curvature singularity is avoided in the quantum theory.Comment: 5 pages, version to appear in CQ

    Quantum Structure of Space Near a Black Hole Horizon

    Get PDF
    We describe a midi-superspace quantization scheme for generic single horizon black holes in which only the spatial diffeomorphisms are fixed. The remaining Hamiltonian constraint yields an infinite set of decoupled eigenvalue equations: one at each spatial point. The corresponding operator at each point is the product of the outgoing and ingoing null convergences, and describes the scale invariant quantum mechanics of a particle moving in an attractive 1/X21/X^2 potential. The variable XX that is analoguous to particle position is the square root of the conformal mode of the metric. We quantize the theory via Bohr quantization, which by construction turns the Hamiltonian constraint eigenvalue equation into a finite difference equation. The resulting spectrum gives rise to a discrete spatial topology exterior to the horizon. The spectrum approaches the continuum in the asymptotic region.Comment: References added and typos corrected. 21 pages, 1 figur

    On (Cosmological) Singularity Avoidance in Loop Quantum Gravity

    Full text link
    Loop Quantum Cosmology (LQC), mainly due to Bojowald, is not the cosmological sector of Loop Quantum Gravity (LQG). Rather, LQC consists of a truncation of the phase space of classical General Relativity to spatially homogeneous situations which is then quantized by the methods of LQG. Thus, LQC is a quantum mechanical toy model (finite number of degrees of freedom) for LQG(a genuine QFT with an infinite number of degrees of freedom) which provides important consistency checks. However, it is a non trivial question whether the predictions of LQC are robust after switching on the inhomogeneous fluctuations present in full LQG. Two of the most spectacular findings of LQC are that 1. the inverse scale factor is bounded from above on zero volume eigenstates which hints at the avoidance of the local curvature singularity and 2. that the Quantum Einstein Equations are non -- singular which hints at the avoidance of the global initial singularity. We display the result of a calculation for LQG which proves that the (analogon of the) inverse scale factor, while densely defined, is {\it not} bounded from above on zero volume eigenstates. Thus, in full LQG, if curvature singularity avoidance is realized, then not in this simple way. In fact, it turns out that the boundedness of the inverse scale factor is neither necessary nor sufficient for curvature singularity avoidance and that non -- singular evolution equations are neither necessary nor sufficient for initial singularity avoidance because none of these criteria are formulated in terms of observable quantities.After outlining what would be required, we present the results of a calculation for LQG which could be a first indication that our criteria at least for curvature singularity avoidance are satisfied in LQG.Comment: 34 pages, 16 figure

    Semiclassical quantisation of space-times with apparent horizons

    Full text link
    Coherent or semiclassical states in canonical quantum gravity describe the classical Schwarzschild space-time. By tracing over the coherent state wavefunction inside the horizon, a density matrix is derived. Bekenstein-Hawking entropy is obtained from the density matrix, modulo the Immirzi parameter. The expectation value of the area and curvature operator is evaluated in these states. The behaviour near the singularity of the curvature operator shows that the singularity is resolved. We then generalise the results to space-times with spherically symmetric apparent horizons.Comment: 52 pages, 4 figure

    Production and decay of evolving horizons

    Full text link
    We consider a simple physical model for an evolving horizon that is strongly interacting with its environment, exchanging arbitrarily large quantities of matter with its environment in the form of both infalling material and outgoing Hawking radiation. We permit fluxes of both lightlike and timelike particles to cross the horizon, and ask how the horizon grows and shrinks in response to such flows. We place a premium on providing a clear and straightforward exposition with simple formulae. To be able to handle such a highly dynamical situation in a simple manner we make one significant physical restriction, that of spherical symmetry, and two technical mathematical restrictions: (1) We choose to slice the spacetime in such a way that the space-time foliations (and hence the horizons) are always spherically symmetric. (2) Furthermore we adopt Painleve-Gullstrand coordinates (which are well suited to the problem because they are nonsingular at the horizon) in order to simplify the relevant calculations. We find particularly simple forms for surface gravity, and for the first and second law of black hole thermodynamics, in this general evolving horizon situation. Furthermore we relate our results to Hawking's apparent horizon, Ashtekar et al's isolated and dynamical horizons, and Hayward's trapping horizons. The evolving black hole model discussed here will be of interest, both from an astrophysical viewpoint in terms of discussing growing black holes, and from a purely theoretical viewpoint in discussing black hole evaporation via Hawking radiation.Comment: 25 pages, uses iopart.cls V2: 5 references added; minor typos; V3: some additional clarifications, additional references, additional appendix on the Viadya spacetime. This version published in Classical and Quiantum Gravit

    Spherically Symmetric Quantum Geometry: Hamiltonian Constraint

    Full text link
    Variables adapted to the quantum dynamics of spherically symmetric models are introduced, which further simplify the spherically symmetric volume operator and allow an explicit computation of all matrix elements of the Euclidean and Lorentzian Hamiltonian constraints. The construction fits completely into the general scheme available in loop quantum gravity for the quantization of the full theory as well as symmetric models. This then presents a further consistency check of the whole scheme in inhomogeneous situations, lending further credence to the physical results obtained so far mainly in homogeneous models. New applications in particular of the spherically symmetric model in the context of black hole physics are discussed.Comment: 33 page

    Defining breakthrough invasive fungal infection-Position paper of the mycoses study group education and research consortium and the European Confederation of Medical Mycology

    No full text
    Breakthrough invasive fungal infections (IFIs) have emerged as a significant problem in patients receiving systemic antifungals; however, consensus criteria for defining breakthrough IFI are missing. This position paper establishes broadly applicable definitions of breakthrough IFI for clinical research. Representatives of the Mycoses Study Group Education and Research Consortium (MSG-ERC) and the European Confederation of Medical Mycology (ECMM) reviewed the relevant English literature for definitions applied and published through 2018. A draft proposal for definitions was developed and circulated to all members of the two organisations for comment and suggestions. The authors addressed comments received and circulated the updated document for approval. Breakthrough IFI was defined as any IFI occurring during exposure to an antifungal drug, including fungi outside the spectrum of activity of an antifungal. The time of breakthrough IFI was defined as the first attributable clinical sign or symptom, mycological finding or radiological feature. The period defining breakthrough IFI depends on pharmacokinetic properties and extends at least until one dosing interval after drug discontinuation. Persistent IFI describes IFI that is unchanged/stable since treatment initiation with ongoing need for antifungal therapy. It is distinct from refractory IFI, defined as progression of disease and therefore similar to non-response to treatment. Relapsed IFI occurs after treatment and is caused by the same pathogen at the same site, although dissemination can occur. These proposed definitions are intended to support the design of future clinical trials and epidemiological research in clinical mycology, with the ultimate goal of increasing the comparability of clinical trial results
    corecore