390 research outputs found

    Investigations of Tll Suspensions

    Get PDF
    Thallous iodide suspensions were obtained by direct mixing of TlN03 and Na! solutions. The amount of TH was kept constant in the systems, while the concentrations of Na! (in excess), laurylamine nitrate (LAN) or myristylamine nitrate (MAN) were varied. Tyndallometric values were recorded as the function of Na!, LAN, and MAN concentrations respectively, for suspensions aged for various times. Particle sizes of differently aged TH in \u27Suspensions containing Na! and Eu(N03)a in solution were determined. Tyndal.:. lometry and electronmicroscopy showed fast particle growth of TH in suspension. After about 10 minutes the TH particle grew up to 1.3 Ό. The zero point of charge, determined by microelectrophoresis, was attained at 0.001-0.005 M Na! and 0.0001-0.0005 M LAN depending on the conditions under which the system had been prepared. The results of radiometrically recorded adsorption- desorption equilibria show a constant increase of the adsorption capacity as the electrolyte concentration increases

    Investigations of Tll Suspensions

    Get PDF
    Thallous iodide suspensions were obtained by direct mixing of TlN03 and Na! solutions. The amount of TH was kept constant in the systems, while the concentrations of Na! (in excess), laurylamine nitrate (LAN) or myristylamine nitrate (MAN) were varied. Tyndallometric values were recorded as the function of Na!, LAN, and MAN concentrations respectively, for suspensions aged for various times. Particle sizes of differently aged TH in \u27Suspensions containing Na! and Eu(N03)a in solution were determined. Tyndal.:. lometry and electronmicroscopy showed fast particle growth of TH in suspension. After about 10 minutes the TH particle grew up to 1.3 Ό. The zero point of charge, determined by microelectrophoresis, was attained at 0.001-0.005 M Na! and 0.0001-0.0005 M LAN depending on the conditions under which the system had been prepared. The results of radiometrically recorded adsorption- desorption equilibria show a constant increase of the adsorption capacity as the electrolyte concentration increases

    New evidence for important lake-level changes in Lake Baikal during the Last Glaciation

    Get PDF
    In recent years, a number of estimates have been proposed of fluctuations of the Baikal lake level caused by climate changes. They were mainly based on the interpretation of reflection seismic data from the Selenga delta area (eastern coast of Lake Baikal). These estimates range between 2 m [Colman, 1998] and 600 m [Romashkin et al., 1997]. Better-constrained values of lake-level changes during the last 100 ky were presented by Urabe et al. [2004]. According to their reflection seismic data from the Selenga delta area, the level of Lake Baikal was significantly lower than the present-day level during the two last cold stages (i.e. -45 m during MIS2 and -73 m during MIS4). To precise and verify these values, we carried out an additional high-resolution reflection seismic study in the area of Olkhon Gate (western shore of Lake Baikal). The maximum water depth in this area does not exceed 40 m. The seismic data were collected using two different types of seismic sources: i) a multi-electrode CENTIPEDE sparker with a frequency range of 350-1400 Hz, and ii) the “Sonic-2” seismic system with a frequency range of 2-5 kHz. They allow investigation of the sedimentary record with a resolution of about 1 m (to 300 m depth) and 15-20 cm (to 30 m depth), respectively.Interpretation of these new data allowed distinguishing several seismic units separated by unconformities (erosion surfaces) in the upper part of the seismic profiles. These unconformities could be traced across the entire study area. The uppermost two erosion surfaces are more sharply defined. In the deepest parts of the channel (at 37-40 m water depth) the uppermost unconformity occurs at 5-10 ms below the lake floor, and the second unconformity at 15-20 ms below the lake floor. Both unconformities are interpreted as subaerial erosion surfaces and thus mark a lowstand of the lake level during a prolonged time. For calculation of the thickness of these two units, we used the acoustic logging data from the BDP-98 borehole [BDP Members, 2000]. According these data p-wave velocities vary from 1.6 to 1.8 km/s. The thickness of our upper two seismic units can thus be converted to 4-8 m and 12-16 m, respectively. This implies that the uppermost unconformity occurs at 41-48 m, and the second unconformity at 52-64 m below present-day lake level, which is approximately at the same depth as the two unconformities in the Selenga delta area that were studied by Urabe et al. [2004] and attributed with the MIS2 and MIS4 cold periods, respectively.Our new data thus support the growing amount of evidence of a lowering of the Lake Baikal water level by 40-65 m during glacial/cold periods. The lowstands are probably caused by water redistribution in the Lake Baikal watershed due to climate changes (i.e. glaciation and atmospheric circulation). These data also allow making quantitative assessments of water balance and paleoclimate parameters in the past

    Determining the structure of a large tilted block between two major boundary faults in a continental rift (central Lake Baikal): a reflection seismic study

    Get PDF
    Between the major boundary faults of the central part of Lake Baikal (ie. the Ol’khon fault and the Primorsky fault), a structurally complex tilted area exists that is strongly influenced by the interaction between these two faults. This area, that is about 30 kilometer wide and a 100 kilometers long, consists of three main parts: Pri-Ol’khon, Ol’khon-island and the submerged Maloe More depression. It is believed that the area formed by the gradual propagation of the Primorsky fault in a southeast direction towards the Ol’khon fault.During the summer of 2001 a large amount of high resolution reflection seismic profiles were shot in Maloe More (>600 km), that could be used to get a better insight in the structural development of the area, and in the geometry of its different sub-blocks and basins. In a first stage we have investigated the morphology of the basement underneath the sedimentary cover, and we determined which structures were fault related and which not. Age constraints on the subsequent evolution came from the correlation of the sedimentary units in Maloe More with deposits on Ol’khon-island, and with data from the long BDP-cores in a nearby area (Academician Ridge).The depth of the basement gradually increases from the southwest towards the northeast, and its morphology is characterised by several ridge structures and faults that strike at high-angle to the main faults. Several of these ridges border basins that contain relatively old sediments (Miocene age; Unit A) later overlain by younger units. Therefore the main basement structures of the Maloe More area should be older than the general believed age for the southward propagation of the Primorsky fault (1 Ma according to earlier models). Moreover the occurrence of relatively thick deposits of unit A in the southwestern extremity of Maloe More and in Ol’khon-gate contradicts the idea that these parts of the area are the youngest, being submerged only recently.Instead, older (isolated) sedimentary traps and lacustrine environments must have existed in this area. Faulting in the younger sediments however shows that the presentday activity of the major boundary faults, still has a pronounced effect on the local structure between them. Some of the formed basins are still determined by displacements on the older structures.For this study we have tried to determine the evolution of the Maloe More area, based on its interpreted structure and the relation with overlying sedimentary deposits, and we have tried to link our observations with existing models for the development of the Primorsky and Ol’khon faults

    Propagation of the Primorsky Fault in the central part of Lake Baikal and the evolution of Maloe More

    Get PDF
    The Primorsky Fault is one of the two major western boundary faults in the central part of Lake Baikal. According to the existing fault growth model (e.g. Agar and Klitgord, 1995), this fault has propagated gradually in a southward direction. During this propagation, the Primorsky Fault has cut through the footwall of the Ol’khon Fault, which is the other major boundary fault 35–40km to the south-east. This propagation has controlled the submergence of the Ol’khon Region which forms a large tilted block between both faults.Based on the interpretation of high-resolution reflection seismic profiles of the submerged part of the Ol’khon Region (ie. Maloe More), different depocentres have been identified in the hanging-wall region of the Primorsky Fault. These depocentres correspond to small basins that are separated from each other by distinct basement ridges, with an orientation that strikes almost perpendicularly to the Primorsky Fault. The occurrence of the oldest sedimentary deposits (Unit A, Miocene age) in depocentres in the southern part of Maloe More, indicates that old sedimentary traps and lacustrine environments must have existed in the area. This finding contradicts the existing growth model for the Primorsky Fault, which assumes that only a recent (ca. 1Ma) and gradual propagation of the fault is responsible for the increasing subsidence in Maloe More. In the different sub-basins, younger sediments (Unit B, Upper Pliocene) overlie the deposits of Unit A. Nevertheless, the upper parts of Unit B are also present on the different basement ridges. The thickness of Unit B is on the northeastern ridges in Maloe More considerably greater than on those more to the south-west, indicating that they have been submerged for a longer time. Careful investigation of a RESURS satellite image of the area has revealed a possible segmentation of the Primorsky Fault, with segment boundaries occurring at the location of the different basement ridges in Maloe More.We believe that the growth of the Primorsky Fault can therefore be described in two different stages. A first stage, during the deposition of Unit A, was characterised by the evolution of 5 different (isolated) segments that defined small basins in Maloe More. The observed basement ridges corresponded at that time to intrabasin highs that resulted from the displacement deficit between the different fault segments. Increasing extension lead to the further growth of the segments, causing a final linkage between them. This linkage marks the onset of a second stage, which was achieved during the deposition of Unit B. Linkage between fault segments caused a displacement increase (mainly at the former location of the segment boundaries), resulting in the submergence of the basement ridge. Seen the thicker deposits of Unit B on the northeastern ridges in Maloe More, we believe that the segment linkage was first established between the northernmost fault segments of the Primorsky Fault. Subsequent linkages between other segments more to the south, and the associated post-linkage displacement increases, caused the further submergence of Maloe More towards the southwest in later stages

    Primorsky rift shoulder uplift and migration of Lake Baikal outlet: effects of rifting on surface processes

    Get PDF
    The Primorsky range developed along the northwestern side of the Lake Baikal rift basin, at the margin of the Siberian Platform. Morphological investigations revealed that the outlet of Lake Baikal changed several times since the Mid-Pleistocene. Lake Baikal was previously connected to the Lena River across the Primorsky Range. Analysis of digital topography suggests that this connection migrated southwestwards along the trend of the range, as the result of more intense uplift of the northeastern part of the range, relative to the lake level. This can be due to either more rapid vertical movements or an earlier initiation of vertical movements. These vertical movements are controlled by the Late Quaternary development of the Baikal rift basin, and also reflect the diachronous long-term evolution of the individual subbasins. In particular, the uplift of the Primorsky Range is accommodated by the activity of the border faults of the rift basins. The linking modes of the different fault segments also played a major role in the development of the sub-basins in Central Baikal. Recent surface deformation affected also the more internal part of the Siberian Plate, controlling its morphology. A belt of shallow active sedimentary basins formed along the external flank of the Primorsky Range. The more internal part of the Siberian platform was deformed in a large domal uplift (the Lena Dome), with its summits lying 1000 m above the basal altitude of the platform. Formation of the Lena Dome might have had a major role in the development of the Kovykta gas field

    Contributorship and division of labor in knowledge production

    Get PDF
    Scientific authorship has been increasingly complemented with contributorship statements. While such statements are said to ensure more equitable credit and responsibility attribution, they also provide an opportunity to examine the roles and functions that authors play in the construction of knowledge and the relationship between these roles and authorship order. Drawing on a comprehensive and multidisciplinary dataset of 87,002 documents in which contributorship statements are found, this article examines the forms that division of labor takes across disciplines, the relationships between various types of contributions, as well as the relationships between the contribution types and various indicators of authors’ seniority. It shows that scientific work is more highly divided in medical disciplines than in mathematics, physics, and disciplines of the social sciences, and that, with the exception of medicine, the writing of the paper is the task most often associated with authorship. The results suggest a clear distinction between contributions that could be labeled as ‘technical’ and those that could be considered ‘conceptual’: While conceptual tasks are typically associated with authors with higher seniority, technical tasks are more often performed by younger scholars. Finally, results provide evidence of a U-shaped relationship between extent of contribution and author order: In all disciplines, first and last authors typically contribute to more tasks than middle authors. The paper concludes with a discussion of the implications of the results for the reward system of science

    Scaled physical models of continental rifting: application to the Baikal Rift Zone

    Get PDF
    Scaled physical models constructed with dry sand layers have proven to be a useful tool for the simulation of the structural patterns that are commonly observed in natural rift systems. With this study we have tried to simulate the evolution of the Baikal Rift Zone as to get better insight in the importance of some of the processes controlling its development. For this purpose, models have been constructed with different baseplate geometries. These models allowed us to observe the possible basement controls on the present-day fault structures in the Baikal Rift Zone.Baseplates having similar shapes as the Siberian Craton caused in the models the development of the stepwise fault deflection that is characteristic for the western border fault system of Lake Baikal. During the initial evolution of the modelled faults, several relay zones were formed between isolated fault segments. Such relay zones are also common in the border fault system of Lake Baikal. In later stages of the modelling, further extension lead to the linkage between fault segments, causing the eventual disappearance of the different relay zones.The development of the models was continuously monitored using digital photographs. Animating the sequence of these photographs allowed to carefully study the kinematic evolution of the experiments. After certain amounts of extension (usually 1 or 2cm) the different basins that had formed in the models were filled with syn-kinematic sand layers. Completed models have subsequently been impregnated and sectioned either vertically or horizontally in 1cm intervals. This technique reveals the internal geometry of the formed fault structures. 3D reconstructions of the models have been produced by digitising certain reference levels on the different crosssections.Such 3D images clearly illustrate the variations in fault displacements in the different parts of the models. Moreover, 3-dimensional representations of the experiments can easily be compared with the available digital terrain models of the Baikal Rift Zone, to test the validity of the modelling results.In this study we have examined in detail the kinematic evolution and the growth of faults in different sandbox experiments, and we have compared our observations with structural interpretations that have already been made for the Baikal Rift Zone

    Sandbox simulations of relay ramp evolution

    Get PDF
    The interaction between two offset overlapping normal faults is characterised by the presence of a relay ramp. In order to investigate the way these structures develop, sandbox experiments were carried out. To simulate the brittle crust, we used dry quartz sand that was extended by means of a rubber sheet located at its base.We imposed the initial configuration of the two interacting normal faults by placing silicone bars at the base of the sand-pack, above the rubber sheet. These, under extension, generated a velocity discontinuity responsible for the development of the normal faults, which later interacted and grew further within the sand package. By varying the initial configuration of the silicone bars, we could easily vary the spacing (distance) between the segments, their overlap, their length and their orientation, and test the influence of these parameters on the development of the ramp between the segments. The modeled faults had aspect ratio’s varying between 2.5 and 5.The relay structures in the experiments were characterised by birth, growth and decay. Birth of a relay ramp marked the onset of interaction and was inferred when a tilt of the sand surface could be observed between the two overlapping faults. Growth was characterised by the propagation of the two interacting faults, increasing the distance of overlap and the tilting of the sand layers. During this growth stage often the deflection of one of the fault traces could be observed. Decay occurred when the two initially isolated faults eventually got connected with each other and the ramp breached.A large part of the relay ramps that were formed in the models were breached — or were getting breached — before the final amount of extension was reached (ß ˜ 20%). For 55% of these ramps it was the hanging-wall fault that propagated towards the footwall fault, for 27% the footwall fault linked up with the hanging-wall fault, and for 18% of these breached ramps, a new fault developed that cross-cut the ramp. The new fault developed only in those cases where the original spacing of the faults was very small compared to their length. An experimental relation between the overlap and spacing of two segments was also determined and compared with earlier theoretical work.Finally, relay ramp evolution in the experiments was also characterised sometimes by several minor-order features which are not commonly observed in natural examples, such as: the further propagation of the fault tips after breaching, an increased displacement gradient just outside the relay ramp instead of inside, etc..

    La formation d'Herzeele: un nouveau stratotype du pleistocene moyen marin de la mer du Nord

    Get PDF
    The Herzeele Brickyard (Northern France) offers a permanently well exposed outcrop of continental and marine deposits which are reaching a total thickness of 6 m and are overlying the Ypresian clay of eocene age, occuring at about 8 m N.G.F.Three marine phases represented by tidal flat and brackish sediments may be readily distinguished. The tidal flat sediments have previously been recognized in the area of Izenberge (Belgium) from which locality the name "Izenberge Cardium Sands" has been derived. The marine sediments may be subdivised into units of different lithology: the lower sandy unit, the middle loamy-clayey unit and the upper sandy clayey unit which latter is characterized by the abundance of Cardium edule and Macoma balthica. The marine phases are furthermore separated by continental deposits amongst which peat layers are occurring. The cover sediments are represented by eolian sands and loams interfering with palaeosoils. The series of sediments underlying these cover deposits is named the "Herzeele Formation" which represents a lithostratigraphical unit in the southern North Sea basin. The analysis of the heavy mineral content points to a change in sediment origin occuring after the lower marine sedimentation. The middle and upper marine units contain an increasing content of green hornblende and epidote. Some volcanic minerals were observed at different levels. The clay analyses by means of X-ray diffraction indicate that the different lithostratigraphical units bear polymineralic clay assemblages within which the smectitic fraction is predominant. Greene-Kelly's (1953) Li-test yielded a further detailed analysis of the smectitic components: beidellite, montmorillonite-like. minerals as well as random mixed-layers illite-smectites. The analysis indicates a stratigraphical - mineralogical subdivision of the section which coincides with the lithostratigraphical one.The pollen analytical data show that the whole of the Herzeele Formation most probably belongs to the second half of the Holsteinian interglacial, except for the very base composed of glauconiferous sands. It may readily be seen that the forest evolved from a mesocratic phase, characterized by a Quercetum mixtum with Picea, towards a telocratic phase during which the forest became dominated by Abies. Within the peat which is resting upon the glauconiferous sands, the pollen grains of Taxus, are very abundant in the overlying clay however, this species declines gradually and disappears at the top of the upper marine unit. These evidences are corresponding with the first half of the so-called Abies- zone. Buxus and Vitis, both undergo the same evolution. The only Tertiary relict, Pterocarya, made a short appearance at the top of the upper marine unit, while Azolla filiculoides, was only discovered in the Quercetum zone. The diatom analyses indicate the conditions of brackish and marine sedimentation in a tidal environment. Although the magnetostratigraphical approach of deep-sea and lake sediments has proven to be successful, its application to continental and especially coastal sediments is hampered by the very nature of these sediments (large variation of sedimentation rate, depositional environment, lithology, a.o.) The palaeomagnetical study of the Herzeele Formation reveals a striking difference inmagnetic behaviour between the upper and lower beds separated by the lowermost peat layer. The upper beds are characterized by a strong dispersion of the magnetisation directions and a low intensity. Therefore identification of clear-cut magnetozone(s) is not possible for the moment being. As to the extension of the Herzeele Formation in Belgium, it was only found south of the river Yzer. The comparison with the area of Izenberge itself did not reveal any lithostratigraphical correlation with the Herzeele Formation. The situation of the stratum (former shoreline) at this type-locality gives prove of the importance of the palaeographical evolution since the Lower Pleistocene with the formation of the southern North Sea basin and probably the early opening of the Strait of Dover as well. Therefore this stratum is considered as a landmark and a witness of several interglacial marine transgressions which are attributed to the Holsteinian and to the upper part of the "Cromerian complex"
    • 

    corecore